Please wait a minute...
浙江大学学报(理学版)  2016, Vol. 43 Issue (6): 740-745    DOI: 10.3785/j.issn.1008-9497.2016.06.020
物理学     
半柔性大分子链穿越微孔行为的研究
马源穗, 李小毛, 李萍, 杨志勇
江西农业大学 物理系, 江西 南昌 330045
Study on the behavior of semiflexible polymer translocating into spherical cavity through the nanopore
MA Yuansui, LI Xiaomao, LI Ping, YANG Zhiyong
Department of Physics, Jiangxi Agriculture University, Nanchang 330045, China
 全文: PDF(797 KB)  
摘要: 采用动态蒙特卡罗模拟方法,模拟半柔性大分子链在电场作用下穿越纳米孔道进入球腔的输运过程. 主要研究电场强度及半柔性大分子链的刚性强度对穿孔过程的影响.发现:平均穿孔时间τ随电场强度的增大而减小,τ与链的长度N满足标度关系τ~Nα,并且电场强度E和弯曲能b对标度指数有显著影响. 研究结果表明,当电场强度为中等时,刚性弱和刚性强的大分子的穿孔过程是完全不同的. 研究半柔性大分子链穿越微孔的行为,有助于更深入认识生物大分子在生命体内的输运过程.
关键词: 动态蒙特卡罗模拟半柔性大分子链穿孔标度行为    
Abstract: The translocation of biomacromolecule(such as protein, RNA/DNA) through channels or nanopores is very important in many biological processes. The semiflexible polymer model can characterize one of the main traits of biomacromolecule: rigidity. Therefore, semiflexible polymer can be used to simulate the biomacromolecule translocation across the nanopore. A semiflexible polymer driven to translocate through the nanopore into spherical cavity is investigated by dynamic Monte Carlo simulation based on three dimensional off-lattice model. This paper focuses on the effect of electric field strength E and bending energy b of semiflexible polymer on the translocation process. It is found that the average translocation time decreases with the increasing E for different b, and τ and N satisfy the relation: τ~Nα. In addition, E and b have obvious influence on the scaling exponent. It also shows that the translocation process is changing with the different b in the regime of moderate electric field strength. Our study on the semiflexible polymer's translocation across a nanopore is helpful to understanding the translocation process of bio-macromolecule in biological body.
Key words: dynamic Monte Carlo    semiflexible polymer    translocation through a nanopore    scaling behavior
收稿日期: 2015-09-06 出版日期: 2017-03-07
CLC:  O631  
基金资助: 国家自然科学基金资助项目(21304039).
通讯作者: 杨志勇,ORCID:http://orcid.org/0000-0003-4506-3956,E-mail:zhiyongyang2009@163.com     E-mail: zhiyongyang2009@163.com
作者简介: 马源穗(1992-),ORCID:http://orcid.org/0000-0003-4506-3956,女,硕士研究生,主要从事生物大分子的输运研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马源穗
李小毛
李萍
杨志勇

引用本文:

马源穗, 李小毛, 李萍, 杨志勇. 半柔性大分子链穿越微孔行为的研究[J]. 浙江大学学报(理学版), 2016, 43(6): 740-745.

MA Yuansui, LI Xiaomao, LI Ping, YANG Zhiyong. Study on the behavior of semiflexible polymer translocating into spherical cavity through the nanopore. Journal of ZheJIang University(Science Edition), 2016, 43(6): 740-745.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2016.06.020        https://www.zjujournals.com/sci/CN/Y2016/V43/I6/740

[1] SAUER-BUDGE A F, NYAMWANDA J A, LUBENSKY D K, et al. Unzipping kinetics of double-stranded DNA in a nanopore[J]. Phys Rev Lett,2003,90:238101.
[2] STORM A, STORM C, CHEN J, et al. Fast DNA translocation through a solid-state nanopore[J]. Nano Lett,2005(5):1193-1197.
[3] DEKKER C. Solid-state nanopores[J]. Nat Nanotechnol,2007(2):209-215.
[4] MUTHUKUMAR M. Polymer translocation through a hole[J]. J Chem Phys,1999,111:10371-10374.
[5] WONG C T, MUTHUKUMAR M. Polymer translocation through a cylindrical channel[J].J Chem Phys,2008,128:154903.
[6] PANJA D, BARKEMA G T. Passage times for polymer translocation pulled through a narrow pore[J]. Biophys J,2008,94:1630-1637.
[7] MILCHEV A, BINDER K, BHATTACHARYA A. Polymer translocation through a nanopore induced by adsorption:Monte Carlo simulation of a coarse-grained model[J]. J Chem Phys,2004,121:6042-6051.
[8] MATYSIAK S, MONTESI A, PASQUALI M, et al. Dynamics of polymer translocation through nanopores:Theory meets experiment[J]. Phys Rev Lett,2006,96:118103.
[9] MUTHUKUMAR M, KONG C Y. Simulation of polymer translocation through protein channels[J]. Proc Natl Aca Sci USA,2006,103:5273-5278.
[10] HAN J, TURNER S W, CRAIGHEAD H G. Entropic trapping and escape of long DNA molecules at submicron size constriction[J]. Phys Rev Lett,1999,83:1688-1691.
[11] SZABÒ I, BATHORI G, TOMBOLA F, et al. DNA translocation across planar bilayers containing bacillus sutilis ion channels[J]. J Biol Chem,1997,272:25275-25282.
[12] HANSS B, LEAL-PINTO E, BRUGGEMAN L A, et al. Identification and characterization of a cell membrane nucleic acid channel[J]. Proc Natl Avad Sci USA,1998,95(4):1921-1926.
[13] KASIANOWICZ J J, BRANDIN E, BRANTON D, et al. Characterization of individual polynucleotide molecules using a membrane channel[J]. Proc Natl Acad Sci USA,1996,93:13770-13773.
[14] KANTOR Y, KARDAR M. Anomalous dynamics of forced translocation[J]. Phys Rev E,2004,69,DOI:10.1103/PhysRevE.69021806.
[15] LUO K F, ALA-NISSILA T, YING S C, et al. Driven polymer translocation through nanopores:Slow versus fast dynamics[J]. Europhysics Letters,2009,88(6):68006.
[16] SUNG W, PARK P J. Polymer Translocation through a pore in a membrane[J]. Phys Rev Lett,1996,77:783-786.
[17] MUTHUKUMAR M. Polymer escape through a nanopore[J].J Chem Phys,2003,118:5174-5184.
[18] XIE Y J, YU H T, YANG H Y, et al. Barrier height of free energy on confined polymer translocation through a short nano-channel[J]. Biochem Biophys Res Commun,2006,349(1):15-19.
[1] 张乾, 吴骥, 余胜东, 王向红. 线性三嵌段共聚物格点薄膜受限下的自组装[J]. 浙江大学学报(理学版), 2018, 45(6): 707-713.
[2] 夏波, 吴起. 脂肪酶催化合成聚R-3-羟基丁酸乙酯寡聚物研究[J]. 浙江大学学报(理学版), 2018, 45(1): 112-117.
[3] 王丝雯, 庄璐, 陈旭, 何林李. 刚柔三嵌段共聚物自组装行为的模拟研究[J]. 浙江大学学报(理学版), 2016, 43(2): 237-241.
[4] 王向红,章林溪,林振成,郑亦庄. 受约高分子链构型的统计性质[J]. 浙江大学学报(理学版), 1999, 26(3): 60-64.
[5] 王向红,章林溪,夏阿根,徐芸,许健民. 受约聚亚甲基链的热力学性质[J]. 浙江大学学报(理学版), 1999, 26(2): 46-50.