Please wait a minute...
浙江大学学报(理学版)  2016, Vol. 43 Issue (6): 733-739    DOI: 10.3785/j.issn.1008-9497.2016.06.019
化学     
Salen双核Cu2+配合物的合成及催化染料降解
江银枝, 程本能, 孙红英, 时永强
浙江理工大学 化学系, 浙江 杭州 310018
The binuclear Cu2+ complex with salen schiff base: Synthesis and catalytic properties in dye degradation
JIANG Yinzhi, CHENG Benneng, SUN Hongying, SHI Yongqiang
Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
 全文: PDF(984 KB)  
摘要: 以水杨醛、N,N'-二胺丙基乙二胺和CuCl2为原料得到了双核配合物Cu2ClL·6H2O,并进行了表征.利用UV-Vis研究了Cu2ClL·6H2O催化甲基橙和酸性蓝9的降解性能,利用GraphPad Prism 5软件绘制了染料降解的V-S曲线,利用HPLC研究了染料的降解产物.结果发现:(1)Cu2ClL·6H2O能有效催化甲基橙和酸性蓝9的氧化降解,10 h后酸性蓝9和甲基橙的降解率分别达到90%与60%;(2)染料的降解动力学符合酶促动力学过程,V-S曲线符合米氏动力学方程,Cu2ClL·6H2O催化甲基橙和酸性蓝9降解米氏常数Km分别为3.29×10-2 和1.93×10-1 mmol·L-1;(3)降解产物有马来酸,并给出了催化剂的催化机理和染料的降解机理.说明Cu2ClL·6H2O可以作为仿酶催化剂,与底物甲基橙和酸性蓝9有较好的结合效果.这为设计作用底物广、效果好的仿酶催化剂提供了理论基础,为染料降解新方法和新技术的开发提供了实践依据.
关键词: 合成配合物染料降解仿生催化废水    
Abstract: The complex, Cu2ClL·6H2O was prepared from salicylaldehyde N,N'-bis-aminopropyl-1, 2-ethanediamine and CuCl2. Its structure and composition were examined by IR spectra and elemental analysis, respectively. Then, its catalytic properties were investigated via degradation of methyl orange and acid blue 9 that were detected by UV-Vis spectra, and their V-S curves were drawn by GraphPad Prism 5 software. The degraded products of these two dyes with the presence of complex as mimetic enzyme were determined by HPLC method. The results show that the degradation rates of acid blue 9 and methyl orange are 90% and 60% after 10 h, respectively, which indicates that the catalytic activity in the degradation of acid blue 9 is better than in methyl orange degradation. It is found that the experimental V-S curve fits Michaelis-Menten equation well, and Km values are 1.93×10-1 and 3.29×10-2 mmol·L-1 for the degradation of acid blue 9 and methyl orange, respectively, implying that the complex could be used as bio-mimetic catalyst in dye degradation. Maleic acid as the degraded product was checked. Moreover, the catalytic mechanism of the complex for degradation of acid blue 9 was deduced. All these provide theoretical and experimental supports for a new dye removal technology and novel bio-mimetic catalyst design in dye degradation.
Key words: synthesis    complex    dye degradation    bio-mimetic catalysis    waste water
收稿日期: 2015-10-20 出版日期: 2017-03-07
CLC:  O614.12  
基金资助: 浙江省自然科学基金资助项目(LY13B010004,LY14B010005);国家自然科学基金资助项目(21472174).
作者简介: 江银枝(1973-),ORCID:http://orcid.org/0000-0003-2393-9654,女,博士,副教授,主要从事配位化学和分析化学研究,E-mail:jiangyinzhi@zstu.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
江银枝
程本能
孙红英
时永强

引用本文:

江银枝, 程本能, 孙红英, 时永强. Salen双核Cu2+配合物的合成及催化染料降解[J]. 浙江大学学报(理学版), 2016, 43(6): 733-739.

JIANG Yinzhi, CHENG Benneng, SUN Hongying, SHI Yongqiang. The binuclear Cu2+ complex with salen schiff base: Synthesis and catalytic properties in dye degradation. Journal of ZheJIang University(Science Edition), 2016, 43(6): 733-739.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2016.06.019        https://www.zjujournals.com/sci/CN/Y2016/V43/I6/733

[1] PHALE P S, BASU A, MAJHI P D, et al. Metabolic diversity in bacterial degradation of aromatic compounds[J]. Omics, 2007,3(11):252-279.
[2] BRILLAS E A. Review on the degradation of organic pollutants in waters by UV photoelectro-fenton and solar photoelectro-fenton[J]. Journal of the Brazilian Chemical Society, 2014,25:393-417.
[3] 周春晓,范雪荣,王强.氧化还原酶在印染中的应用(一)[J].印染,2014(6):47-50. ZHOU Chunxiao, FAN Xuerong,WANG Qiang. Application of oxidoreductases in textile wet processing(I)[J]. Dyeing & Finishing, 2014(6):47-50.
[4] AFSANEH S, FATEMEH S, HAMIDREZA S, et al. Facile approach to the synthesis of carbon nanodots and their peroxidase mimetic function in azo dyes degradation[J]. RSC Adv,2012(2):7367-7370.
[5] MARYIN L R, ANDRÉS R G, HUGO R Z, et al. Azo-dye orange Ⅱ degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst-Kinetics with a model based on the Fermi's equation[J]. Applied Catalysis B:Environmental, 2014,146:192-200.
[6] BOKARE A D, CHOI W Y. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes[J]. Journal of Hazardous Materials, 2014,275:121-135.
[7] YU X M, ZHOU M H, HU Y S. Recent updates on electrochemical degradation of bio-refractory organic pollutants using BDD anode:A mini review[J]. Environmental Science and Pollution Research, 2014,21:8417-8431.
[8] FOCKEDEY E, LIEEDE A V. Coupling of anodic and cathode reactions for phenol electro-oxidation using three-dimensional electodes[J]. Water Research,2002,36:416-417.
[9] LAURA C C, JOSE L S, BLANCA E B. Biodegradation of organic pollutants in saline waste water by halophilic microorganisms:A review[J]. Environmental Science and Pollution Research. 2014,21:9578-9588.
[10] VERNEKAR M, LELE S S. Laccase:Properties and applications[J]. Bioresources,2009(4):1694-1717.
[11] 高键,关可兴,焦晶,等.细菌漆酶的结构催化性能及其应用[J].分子催化,2014,28:188-196. GAO Jian, GUAN Kexing, JIAO Jing, et al. Structure, catalytic properties and application of laccase[J]. Journal of Molecular Catalysis, 2014,28:188-196.
[12] 江银枝,时永强,史银瓶,等.双水杨醛缩二乙烯三胺Cu(Ⅱ)配合物的合成及催化染料降解性能[J].中国科学:化学,2014,44(10):1528-1535. JIANG Yinzhi, SHI Yongqiang, SHI Yinping, et al. Synthesis and dye degradation performance of the complex of Cu(Ⅱ) with bis-salicylidene diethylenetriamine Schiff base[J]. Scientia Sinica:Chimica, 2014,44(10):1528-1535.
[13] LOULOUDI M,MITOPOULOU K, EVAGGELOU E. Homogeneous and heterogenized copper(Ⅱ) complexes as catechol oxidation catalysts[J]. J Mole Cata A,2003,198:231-240.
[14] SUPRITI P, PRASANT K N, CORINE M, et al. Aqua bridge cleavage and metal ion extrusion by thiocyanate anions in a dicopper complex[J]. Inorganica Chimica Acta, 2011,370:108-116.
[15] BRENDA W T, CARLA J M, PHILLIP E F, et al. Green structure-distribution relationships for metal-labeled myocardial imaging agents:Comparison of a series of cationic gallium(Ⅱ1) complexes with hexadentate bis(salicyla1dimine) ligands[J]. J Med Chem, 1994,37:4400-4406.
[16] PRASANT K N, DEBASHREE M, DEBASHIS R. Coordination induced 2-(2-hydroxyphenyl) imidazolidine ring hydrolysis of dinucleating amine-imine-phenol ligands:X-ray structures of hardness-matched mononuclear cobalt(Ⅲ) complexes as end products having isomeric N4O2 coordination spheres[J].Polyhedron, 2006,25:702-710.
[1] 韩玉,史成超,陈磊,刘浩然,虞家欣,史惠祥. FeSO4强化活性污泥法除锑技术研究[J]. 浙江大学学报(理学版), 2023, 50(2): 185-194.
[2] 周楚晨,李成,钱建英,杨昆仑,胡韵璇,徐新华. 氧化铁红对印染废水中锑(V)的吸附性能[J]. 浙江大学学报(理学版), 2022, 49(2): 201-209.
[3] 潘峰, 王磊, 郭怡, 沈金滢, 潘晓峰, 郑卫新. 2-碘-3-(对甲苯磺酰氧基)苯基醚的选择性合成[J]. 浙江大学学报(理学版), 2021, 48(5): 579-583.
[4] 裘佳萍, 杜培臻, 雷鸣, 田梅, 方群, 张宏, 徐光明, 潘建章. 微型模块化微流控PET显像剂合成仪的研制及应用[J]. 浙江大学学报(理学版), 2021, 48(5): 573-578.
[5] 沈杭锋, 崔洁, 刘敏, 方桃妮, 陈光宇. 福建登陆北上台风对杭州影响的对比分析[J]. 浙江大学学报(理学版), 2020, 47(5): 582-593.
[6] 高百俊, 张佳, 朱振扬. M-可补子群对合成因子的影响[J]. 浙江大学学报(理学版), 2019, 46(5): 526-528.
[7] 李佳慧, 杨芳芳, 王珍, 张赛南, 王首锋. 新型双功能谷胱甘肽合成酶的真核和原核表达[J]. 浙江大学学报(理学版), 2019, 46(4): 474-481.
[8] 江银枝, 李静, 袁辉强, 陈燕慧. 核壳Fenton催化剂CuFe2O4@PDA-Cu的制备、表征及其活化H2O2降解染料的性能[J]. 浙江大学学报(理学版), 2018, 45(4): 450-460.
[9] 史宇滨, 陈子文, 鲍玥, 邹骏华, 万先凯, 史惠祥. 造纸污泥活性炭在催化臭氧氧化降解橙黄Ⅱ中的应用研究[J]. 浙江大学学报(理学版), 2017, 44(5): 568-575.
[10] 桂彦, 王培玉, 李峰, 刘杨. 基于GPU加速的几何纹理合成方法[J]. 浙江大学学报(理学版), 2016, 43(6): 638-646.
[11] 屠美玲, 俞卫平, 冯涛, 贾继宁, 张云, 张建庭. A2A腺苷受体拮抗剂中间体与抗结剂合成方法研究[J]. 浙江大学学报(理学版), 2016, 43(4): 420-425.
[12] 汪冒君, 宣南霞, 吴 军. 乙酰乳酸合成酶与抑制剂ZJ0777及CIE的分子对接和分子动力学模拟[J]. 浙江大学学报(理学版), 2015, 42(6): 709-713.
[13] 谢晓梅1,石伟勇1,马国瑞1,曾正志2. 二环戊二烯基钛(IV)配合物的合成及表征 Ⅰ———水杨酸和阿斯匹林茂钛配合物的合成及表征[J]. 浙江大学学报(理学版), 1999, 26(2): 56-60.
[14] 黄志真,黄 宪. 钯催化芳卤与亚磷酸二烷酯的相转移偶联反应[J]. 浙江大学学报(理学版), 1998, 25(3): 59-61.
[15] 梅明华,楼 辉. 中孔分子筛MCM-41 的合成与表征[J]. 浙江大学学报(理学版), 1998, 25(2): 62-65.