Please wait a minute...
浙江大学学报(理学版)  2016, Vol. 43 Issue (5): 593-600    DOI: 10.3785/j.issn.1008-9497.2016.05.017
地球科学     
2013年“菲特”台风暴雨数值模拟中微物理方案的对比试验
刘瑞, 翟国庆, 朱佩君, 李靓靓
浙江大学 地球科学学院, 浙江 杭州 310027
The effects of different microphysical schemes in WRF on the rainstorm of typhoon Fitow in 2013
LIU Rui, ZHAI Guoqing, ZHU Peijun, LI Liangliang
School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2960 KB)  
摘要: 利用TRMM(热带测雨雷达)搭载的TMI(微波成像仪)反演廓线资料,分析“菲特”台风登陆前、后云团内部水凝物的分布种类,依此选择WRF区域中尺度模式下符合条件的6个云微物理过程参数化方案(Lin,WSM6,Godgce,WDM6,Morrison以及Thompson方案),模拟2013年10月6~8日的台风过程.从降水落区、强度,水凝物及风场垂直分布,台风路径及强度等方面对预报性能进行对比,结果表明,选用的6个云微物理方案都较好地模拟了浙江暴雨的范围和强度.结合Ts评分,降水量级越大,模拟效果对云微物理方案选择越敏感,其中,Lin方案效果最佳,尤其对极端降水的模拟,其次为WSM6、WDM6及Thompson方案,Morrison和Godgce方案相对较差.结合水凝物平均值廓线分布发现,除WDM6方案外,其他方案对暖雨过程的模拟基本一致,而对冰相过程的模拟6个方案差别较大;同时,各方案对风分量的模拟结果较水凝物廓线差别小,说明对于动力因素模拟不敏感.另外,6个方案对于台风强度的模拟整体偏弱,相较之下,Lin方案较好地模拟了强度变化趋势.
关键词: “菲特”台风微波成像仪云微物理参数化方案气象研究与预报    
Abstract: Based on the measurements by TRMM Microwave Imager (TMI), we select six cloud microphysics parameterization (MP) schemes(schemes lin, wsm6, godgce, wdm6, morrison, and thompson) in the weather research and forecasting (WRF) model to simulate a typhoon case occurred during October 6-8, 2013. The applicability of these MP schemes to the simulation of the typhoon Fitow is studied accounting for the rainfall area and intensity of precipitation, vertical distributions of averaged hydrometeors and wind and the track and intense, forecast performances. It shows that the simulations results of all selected MP schemes t agree with the observation data of the rainfall area and intensity. According to the analysis results of threat score (Ts), the more actual precipitation, the more sensitive the choice of MP schemes, it seems that the lin scheme has the best performance among the six especially for extreme precipitation while the scheme of morrison and godgce have the worst performance. Referring to the vertical distributions of averaged hydrometeors and wind, we found that the simulation results of all MP schemes (except wdm6) on warm rain processes are basically the same, but a wide range of differences on ice phase process. Meanwhile, all MP schemes are less sensitive to dynamic simulation. Besides, our studies show that all these MP schemes do not have major impact on the track and their effect on the simulated intensity, is underestimated. Overall, lin scheme provides the best tendency forecast of the strength.
Key words: typhoon Fitow    TMI    cloud microphysics parameterization schemes    WRF
收稿日期: 2015-04-30 出版日期: 2016-05-01
CLC:  P435  
基金资助: 国家自然科学基金面上项目(41575042).
作者简介: 刘瑞(1987-),ORCID:http://orcid.org/0000-0002-4444-5701,女,硕士,中级实验师,主要从事卫星数据处理、数值模拟及实验等相关工作,E-mail:liurui_geo@zju.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘瑞
翟国庆
朱佩君
李靓靓

引用本文:

刘瑞, 翟国庆, 朱佩君, 李靓靓. 2013年“菲特”台风暴雨数值模拟中微物理方案的对比试验[J]. 浙江大学学报(理学版), 2016, 43(5): 593-600.

LIU Rui, ZHAI Guoqing, ZHU Peijun, LI Liangliang. The effects of different microphysical schemes in WRF on the rainstorm of typhoon Fitow in 2013. Journal of ZheJIang University(Science Edition), 2016, 43(5): 593-600.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2016.05.017        https://www.zjujournals.com/sci/CN/Y2016/V43/I5/593

[1] 陶诗言.中国之暴雨[M].北京:科学出版社,1980:1-10. TAO Shiyan. Heavy Rain in China[M]. Beijing: Science Press,1980:1-10.
[2] 陈联涛,孟智勇.我国热带气旋研究10年进展[J].大气科学,2001,25(03):420-432. CHEN Lianshou, MENG Zhiyong. An overview on tropical cyclone research progress in china during the past ten years [J]. Chinese Journal of Atmospheric, 2001,25(03):420-432.
[3] 陈联寿,罗哲贤,李英.登陆热带气旋研究的进展[J].气象学报,2004,62(5):541-549. CHEN Lianshou, LUO Zhexian, LI Ying. Research advances on tropical cyclone landfall process[J]. Acta Meteorologica Sinica,2004,62(5):541-549.
[4] 周玲丽,翟国庆,王东法,等.0505号“海棠”台风暴雨数值模拟试验和分析[J].大气科学,2009,33(3):489-500. ZHOU Lingli, ZHAI Guoqing, WANG Dongfa, et al. Numerical simulation and analysis of typhoon Haitang(0505) heavy rainfall[J]. Chinese Journal of Atmospheric Sciences, 2009,33(3):489-500.
[5] SKAMAROCK W, KLEMP J B, DUDHIA J, et al. A Description of the Advanced Research WRF Version 3 [R]. NCAR Technical Note, NCAR/TN-475+STR,2008.
[6] 尹金方,王东海,翟国庆.区域中尺度模式云微物理参数化方案特征及其在中国的适用性[J].地球科学进展,2014,29(2):238-249. YIN Jinfang, WANG Donghai, ZHAI Guoqing. A study of characteristics of the cloud microphysical parameterization schemes in mesoscale models and its applicability to China[J]. Advance in Earth Science,2014,29(2):238-249.
[7] 马严枝,陆昌根,高守亭.8.19华北暴雨模拟中微物理方案的对比试验[J].大气科学,2012,36(4):835-850. MA Yanzhi, LU Changgen, GAO Shouting. The effects of different microphysical schemes in WRF on a heavy rainfall in north China during 18-19 August 2010[J]. Chinese Journal of Atmospheric Sciences,2012,36(4):835-850.
[8] HOUGHTON J T, DING Y, GRIGGS D J, et al. Climate Change 2001: The Scientific Basis[M]. Cambridge: Cambridge University Press,2001.
[9] RAJEEVAN M, KESARKAR A, THAMPI S B, et al. Sensitivity microphysics to simulations of a severe thunder Southeast India[J]. Ann Geophys, 2010,28:603-619.
[10] LI X, PU Z. Sensitivity of numerical simulation of early rapid intensification of hurricane emily (2005) to cloud microphysical and planetary boundary layer parameterization[J]. MonWea Rev, 2008,136:4819-4838.
[11] ZHU T, ZHANG D L. Numerical simulation of Hurricane Bonnie (1998). Part II: Sensitivity to varying cloud microphysical processes[J]. J Atmos Sci,2006,63:109-126.
[12] YANG M J, CHING L. A modeling study of typhoon Toraji (2001):Physical parameterization sensitivity and topographic effect[J]. Terr Atmos Oceanic Sci, 2005,16:177-213.
[13] 黄海波,陈春艳,朱雯娜,等.WRF模式不同云微物理参数化方案及水平分辨率对降水预报效果的影响[J].气象科技,2011,39(5):529-536. HUANG Haibo, CHEN Chunyan, ZHU Wenna, et al. Impacts of different cloud microphysical processes and horizontal resolutions of WRF model on precipitation forecast effect[J]. Meteorological Science and Technology,2011,39(5):529-536.
[14] 朱格利,林万涛,曹艳华,等.用WRF模式中不同云微物理参数化方案对华南一次暴雨过程的数值模拟和性能分析[J].大气科学,2014,38(3):513-523. ZHU Geli, LIN Wantao, CAO Yanhua, et al. Numerical simulation of a rainstorm event over south China by using various cloud microphysics parameterization schemes in WRF model and its performance analysis[J]. Chinese Journal of Atmospheric Sciences,2014,38(3):513-523.
[15] JOANNE S, ROBERT F A, GERALD R N. A propos Mission(TRMM) satellite[J]. Bull Amer Meteor Soc,1988,69:278-295.
[16] 吕艳彬,顾雷,李亚萍,等.用华南暴雨试验雨量资料对TRMM/TMI-85.5 GHz测雨能力的考察[J].热带气象学报,2001,17(3):251-257. LYU Yanbin, GU Lei, LI Yaping, et al. Observation research for the measure rain falling capacity of TRMM/TMI-85.5 G based on the precipitation data during the heavy rain experiment in southern China[J]. Journal of Tropical Meteorology,2001,17(3):251-257.
[17] 姚展予,李万彪,朱元竞,等.用TRMM卫星微波成像仪遥感云中液态水[J].应用气象学报,2003,14(Z1):19-25. YAO Zhanyu, LI Wanbiao, ZHU Yuanjing, et al. Remote sensing of cloud liquid water using TRMM microwave imager[J]. Journal of Applied Meteorological Science,2003,14(Z1):19-25.
[18] 傅云飞,刘栋,王雨,等.热带测雨卫星综合探测结果之“云娜”台风降水云与非降水云特征[J].气象学报,2007,65(3):316-328. FU Yunfei, LIU Dong, WANG Yu, et al. Characteristics of precipitating and non-precipitating clouds in
[1] 陈有利, 徐慧燕, 卢美, 朱业, 刘瑞. 用调整边界层湍流系数的QNSE方案模拟夏秋季沿海大风的应用研究[J]. 浙江大学学报(理学版), 2018, 45(3): 343-350,362.