Please wait a minute...
浙江大学学报(理学版)  2016, Vol. 43 Issue (5): 587-592    DOI: 10.3785/j.issn.1008-9497.2016.05.016
地球科学     
基于动床模型的泥石流虹吸排水分流池自清淤能力研究
陈晓辉1, 徐毅青2, 孙红月1, 余文飞1
1. 浙江大学 海洋学院, 浙江 杭州 310058;
2. 浙江树人大学, 浙江 杭州 310015
Analysis on the self-dredging capability of siphon drainage pool of debris flow based on the movable bed model
CHEN Xiaohui1, XU Yiqing2, SUN Hongyue1, YU Wenfei1
1. Ocean College, Zhejiang University, Hangzhou 310058, China;
2. Zhejiang Shuren University, Hangzhou 310015, China
 全文: PDF(1699 KB)  
摘要: 泥石流的形成,必须同时具备丰富的松散堆积物、足够的水源和有利的地形地貌3个基本条件.控制调节水动力条件是防止泥石流灾害发生的有效方法,而采用具有自清淤能力的水石分离虹吸排水技术,将分流进入泥石流沟内的水直接排入下游安全区,从而达到减小泥石流沟谷的水动力、防止泥石流启动的目的.而保证泥石流治理效率和耐久性的前提是分流池的自清淤能力.应用计算流体力学软件CFD建立三维数值模型,采用欧拉动床模型对分流池在虹吸作用下的水力特性进行分析,并用物理模型模拟验证了虹吸排水清淤的可行性.分析结果表明:床面不平整有利于泥沙起动悬浮;进出口水头差、泥沙粒径及淤积厚度、泥沙之间的碰撞都会对虹吸清淤效率产生影响.所得结论对实际泥石流防治工程中虹吸分流池的设计,如负压水头、拦污格栅孔径的选取具有一定的指导意义.
关键词: 泥石流虹吸排水自清淤CFD欧拉动床模型    
Abstract: The occuring of debris flow in the valley involves concurrently three basic conditions which include rich loose deposits ,enough water and favorable terrain.Controlling hydrodynamic condition is an effective method to prevent the occurrence of debris flow. The siphon drainage technology of self-dredging ability and water separation can discharge excess water from debris flow gully to downstream security zone so as to weaken hydrodynamic conditions in the debris flow gully, hence preventing the occurrence of debris flow .However,self-dredging capability of siphon drainage pool is the premise to ensure the efficiency and durability of debris flow control. By using computational fluid dynamics software CFD together with Euler movable bed model, a three-dimensional numerical model is established to analyze the hydraulic characteristics of the flow in the drainage pool. Mathematical model of sediment incipient motion and suspension is established at the same time. Furthermore,it verifies the feasibility of siphon dredging by employing the physical model. Results show that uneven bottom bed is conductive to sediment incipient motion and suspension. While the water head having difference between inlet and outlet , particle size , deposition thickness and mutual collision between sediment particles all can affect the siphon dredging efficiency. The above results can guide the design of siphon drainage pool in practical debris flow prevention engineering,such as how to choose the water head having difference between inlet and outlet,and the diameter of the barrier grid.
Key words: debris flow    siphon drainage    self-dredging    CFD    Euler movable bed model
收稿日期: 2015-11-18 出版日期: 2016-05-01
CLC:  P642.23  
基金资助: 国家自然科学基金资助项目(41272336);浙江省教育厅资助项目(Z201122174).
通讯作者: 孙红月,ORCID:http//orcid.org/0000-0002-2267-305X,E-mail:shy@zju.edu.cn.     E-mail: shy@zju.edu.cn
作者简介: 陈晓辉(1988-),ORCID:http://orcid.org/0000-0001-9443-9193,男,硕士生,主要从事地质灾害防治及相关研究,E-mail:983674048@qq.com.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈晓辉
徐毅青
孙红月
余文飞

引用本文:

陈晓辉, 徐毅青, 孙红月, 余文飞. 基于动床模型的泥石流虹吸排水分流池自清淤能力研究[J]. 浙江大学学报(理学版), 2016, 43(5): 587-592.

CHEN Xiaohui, XU Yiqing, SUN Hongyue, YU Wenfei. Analysis on the self-dredging capability of siphon drainage pool of debris flow based on the movable bed model. Journal of ZheJIang University(Science Edition), 2016, 43(5): 587-592.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2016.05.016        https://www.zjujournals.com/sci/CN/Y2016/V43/I5/587

[1] KANG Zhicheng, LI Zhuofen, MA Ainai, et al. Study on Debris Flow in China[M]. Beijing:Science Press,2004.
[2] CHEN Suchin, WANG Shunchang, WU Chonghong. Sediment removal efficiency of siphon dredging with wedge-type suction head and float tank[J]. International Journal of Sediment Research,2010,25(2):149-160.
[3] NI Jinren,WANG Guangqian,ZHANG Hongwu. Basic Principle of the Two Phase Flow and Its Application[M].Beijing:Science Press,1991.
[4] CHEN Yongmin. Study on Sedimentation and Cleansing Technology for Pressurized CSO Deep Chamber[D]. Hangzhou: Zhejiang University,2011.
[5] FRANKIN E M, CHARRU F. Morphology and displacement of dunes in a closed-conduit flow [J]. Powder Technology,2009,190(1):247-251.
[6] ZHANG Ruijin. River Sediment Dynamics[M].Beijing:China Water Conservancy and Hydropower Press,1998.
[7] ZHUN Zhiwen, LIU Zhenqing.Three-dimensional numerical simulation for local scour around cylindric bridge pier[J]. China Journal of Highway and transport,2011,24(2):42-48.
[8] ZHANG Bojie. Three-Dimensional Numerical Simulation of Local Scour Around the Piles Supporting Offshore Wind Turbine in Steady Current[D]. Tianjin:Tianjin University, 2012.
[9] SUN Jianwei, SUN Zhaochen,GENG Hong.Numberical model for local scour around offshore pipelines[J]. Ocean Technology,2010,29(1):51-54.
[10] CHEN Zhile. Numberical Modeling of Flow and Local Scour Around A Vertical Cylinder[D].Shanghai: Shanghai Jiao Tong University, 2008.
[11] WU Gangfeng. Two-Dimensional Model for Flood Propagation Over Fixed and Movable Bed[D]. Hangzhou: Zhejiang University, 2014.
[12] DUFRESNE M, VAZQUEZ J, TERFOUS A, et al. Experimental investigation and CFD modeling of flow, sedimentation, and solids separation in a combined sewer detention tank [J]. Computers &Fluids,2009,38(2):1042-1049.
[13] WANG Fujun. Computational Fluid Dynamics Analysis[M].Beijing:Tsinghua University Press,2006.
[14] LIU Qingquan, CAO Wenhong. On the mechanism of winnowing of sediment particles[J]. Journal of Hydraulic Engineering,1998(5):1-11.
[15] MAO Ye, ZHANG Zhijun, XU Xirong. Review of the study on coherent structure of turbulence in open-channel flow and its interaction with sediment movements[J]. Journal of Hohai University,1999,27(4):24-29.
[16] TANG Cunben, HONG Dalin.Experimental study on critical conditions for sediment suspension[J]. Waterway Transportation Scientific Research, 1994(4):285-296.
[17] SHA Yuqing. Dynamics of Sediment Movement[M]. Beijing:China Industry Press,1965.
No related articles found!