Please wait a minute...
浙江大学学报(理学版)  2018, Vol. 45 Issue (6): 714-720    DOI: 10.3785/j.issn.1008-9497.2018.06.012
化学     
高水热稳定性加氢脱氧催化剂Pt/Ce0.5M0.5O2(M=Zr,Ti)的制备及其性能研究
常傲, 陈爱苹, 楼辉, 陈平
浙江大学 化学系 催化研究所, 浙江 杭州 310028
Study on the preparation and property of Pt/Ce0.5M0.5O2(M=Zr, Ti) catalysts with high hydrothermal stability for hydrodeoxygenation
CHANG Ao, CHEN Aiping, LOU Hui, CHEN Ping
Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
 全文: PDF(9556 KB)   HTML  
摘要: 分别采用共沉淀法和溶胶凝胶法制备了具有高水热稳定性的Ce0.5M0.5O2(M=Zr,Ti)载体,并通过浸渍法制得高分散Pt/Ce0.5M0.5O2(M=Zr,Ti)催化剂,分析了短链脂肪醇作为氢供体用于香兰素加氢脱氧反应的催化性能.实验结果表明,复合氧化物催化剂Pt/Ce0.5M0.5O2(M=Zr,Ti)具有高的水热稳定性和优良的加氢脱氧活性,且Pt/Ce0.5Zr0.5O2较Pt/Ce0.5Ti0.5O2的催化性能更胜一筹,催化剂的加氢脱氧性能与其表面的酸性质以及贵金属Pt在载体上的高度分散有关.短链脂肪醇作为含氢的有机小分子,可作为氢源替代氢气,是理想有效的氢供体.
关键词: 脂肪醇香兰素加氢脱氧氢供体    
Abstract: Mixed oxides Ce0.5M0.5O2(M=Zr, Ti) with high hydrothermal stability were prepared by the coprecipitation and sol-gel method, and highly dispersed Pt/Ce0.5M0.5O2(M=Zr, Ti) catalysts were effectively synthesized by impregnation. The catalytic property of short-chain aliphatic alcohols as hydrogen donors for the hydrodeoxygenation (HDO) of vanillin over Pt/Ce0.5M0.5O2(M=Zr, Ti) catalysts was investigated. It was found that the mixed oxides Ce0.5M0.5O2(M=Zr, Ti) were the supports with high hydrothermal stability, and the catalytic activity of Pt/Ce0.5Zr0.5O2 for HDO of vanillin was superior to that of Pt/Ce0.5Ti0.5O2. The catalytic property was mainly attributed to the surface acidity and the highly dispersed Pt supported on the catalyst. The short-chain aliphatic alcohols, as the hydrogenous organic small moleculars, were the alternative hydrogen resources and could be used as the ideal and effective hydrogen donors due to their availability and high safety.
Key words: aliphatic alcohol    vanillin    hydrodeoxygenation    hydrogen donor
收稿日期: 2017-12-06 出版日期: 2018-11-25
CLC:  O643  
基金资助: “973计划”项目(2013CB228104).
通讯作者: 陈平,ORCID:http://orcid.org/0000-0003-3458-3526,E-mail:c224@zju.edu.cn.     E-mail: c224@zju.edu.cn
作者简介: 常傲(1992-),ORCID:http://orcid.org/0000-0002-3690-7099,女,硕士研究生,主要从事生物质催化转化研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
常傲
陈爱苹
楼辉
陈平

引用本文:

常傲, 陈爱苹, 楼辉, 陈平. 高水热稳定性加氢脱氧催化剂Pt/Ce0.5M0.5O2(M=Zr,Ti)的制备及其性能研究[J]. 浙江大学学报(理学版), 2018, 45(6): 714-720.

CHANG Ao, CHEN Aiping, LOU Hui, CHEN Ping. Study on the preparation and property of Pt/Ce0.5M0.5O2(M=Zr, Ti) catalysts with high hydrothermal stability for hydrodeoxygenation. Journal of Zhejiang University (Science Edition), 2018, 45(6): 714-720.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2018.06.012        https://www.zjujournals.com/sci/CN/Y2018/V45/I6/714

[1] SAVALIYA M L, DHORAJIYA B D, DHOLAKIYA B Z. Recent advancement in production of liquid biofuels from renewable resources:A review[J]. Research on Chemical Intermediates,2015, 41(2):475-509.
[2] MÄKI-ARVELA P, MURZIN D. Hydrodeoxygenation of lignin-derived phenols:From fundamental studies towards industrial applications[J]. Catalysts, 2017, 7(9):265-305.
[3] 张兴华, 陈伦刚, 张琦,等. 木质素基酚类化合物加氢脱氧制取碳氢燃料[J]. 化学进展, 2014, 26(12):1997-2006. ZHANG X H, CHEN L G, ZHANG Q, et al. Production of hydrocarbons via hydrodeoxygenation of lignin-derived phenolic compounds[J].Progress in Chemistry,2014, 26(12):1997-2006.
[4] SENOL O, RYYMIN E M, VILJAVA T R, et al. Reactions of methyl heptanoate hydrodeoxygenation on sulphided catalysts[J]. Journal of Molecular Catalysis A:Chemical,2007, 268(1/2):1-8.
[5] FERRARI M, BOSMANS S, MAGGI R, et al. CoMo/carbon hydrodeoxygenation catalysts:Influence of the hydrogen sulfide partial pressure and of the sulfidation temperature[J].Catalysis Today, 2001, 65(2/3/4):257-264.
[6] NIAZ S, MANZOOR T, PANDITH A H. Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil:A review[J].Renewable and Sustainable Energy Reviews, 2016, 58:1293-1307.
[7] FISK C A, MORGAN T, JI Y, et al. Bio-oil upgrading over platinum catalysts using in situ generated hydrogen[J]. Applied Catalysis A:General, 2009, 358(2):150-156.
[8] PANAGIOTOPOULOU P, MARTIN N, VLACHOS D G. Effect of hydrogen donor on liquid phase catalytic transfer hydrogenation of furfural over a Ru/RuO2/C catalyst[J]. Journal of Molecular Catalysis A:Chemical,2014, 392:223-228.
[9] HUANG Y B, YANG Z, CHEN M Y, et al. Heterogeneous palladium catalysts for decarbonylation of biomass-derived molecules under mild conditions[J]. Chem Sus Chem, 2013, 6(8):1348-1351.
[10] SUN Q, CHEN M, AGUILA B, et al. Enhancing the biofuel upgrade performance for Pd nanoparticles via increasing the support hydrophilicity of metal-organic frameworks[J]. Faraday Discuss, 2017,201:317-326.
[11] LASKAR D D, TUCKER M P, CHEN X W, et al. Noble-metal catalyzed hydrodeoxygenation of biomass-derived lignin to aromatic hydrocarbons[J]. Green Chemistry,2014, 16(2):897-910.
[12] 王枫濂,楼辉,陈平.低碳醇用于香兰素加氢脱氧反应的研究[J].浙江大学学报(理学版), 2016,43(1):28-34. WANG F L, LOU H, CHEN P. The short-chain alcohol hydrogen donor for the hydrodeoxygenation of vanillin[J].Journal of Zhejiang University (Science Edition), 2016,43(1):28-34.
[13] HORI C E, PERMANA H, NG K Y S, et al. Thermal stability of oxygen storage properties in a mixed CeO2-ZrO2 system[J]. Applied Catalysis B Environmental, 1998, 16(2):105-117.
[14] ZHANG X H, LUO L T, DUANA Z H. Preparation and application of Ce-doped mesoporous TiO2 oxide[J]. Reaction Kinetics and Catalysis Letters, 2005, 87(1):43-50.
[15] DAMYANOVA S, PEREZ C A, SCHMAL M, et al. Characterization of ceria-coated alumina carrier[J]. Applied Catalysis A:General, 2002, 234(1/2):271-282.
[16] FANG J, BI X, SI D, et al. Spectroscopic studies of interfacial structures of CeO2-TiO2 mixed oxides[J]. Applied Surface Science, 2007, 253(22):8952-8961.
[17] YANG S, ZHU W, JIANG Z, et al. The surface properties and the activities in catalytic wet air oxidation over CeO2-TiO2 catalysts[J]. Applied Surface Science, 2006,252(24):8499-8505.
[18] ARSLAN A, DOGU T. Effect of calcination/reduction temperature of Ni impregnated CeO2-ZrO2 catalysts on hydrogen yield and coke minimization in low temperature reforming of ethanol[J]. International Journal of Hydrogen Energy, 2016, 41(38):16752-16761.
[19] SING K S W, EVERETT D H, HAUL R A W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure Applied Chemistry, 2009, 54(11):2201-2218.
[20] FENG G, LIU Z, CHEN P, et al. Influence of solvent on upgrading of phenolic compounds in pyrolysis bio-oil[J]. Rsc Advances, 2014, 4(91):49924-49929.
[21] MARCUS Y. The properties of organic liquids that are relevant to their use as solvating solvents[J]. Chemical Society Reviews, 1993,22:409-416.
[1] 陈辰, 费金华. 载体对负载型Zn催化剂上愈创木酚加氢脱氧(HDO)性能的影响[J]. 浙江大学学报(理学版), 2019, 46(5): 579-583.
[2] 王枫濂, 楼 辉, 陈 平. 低碳醇用于香兰素加氢脱氧催化反应的试验[J]. 浙江大学学报(理学版), 2016, 43(1): 29-34.
[3] 何莉莉, 秦 玉, 楼 辉, 陈 平. 以活性炭为载体的碳化钼催化剂在香兰素加氢脱氧反应中的作用[J]. 浙江大学学报(理学版), 2015, 42(6): 631-636.
[4] 曹丹艳, 陈 平, 楼 辉, HONG Haiping. 多壁碳纳米管负载的碳化钼催化剂在玉米油加氢脱氧反应中的应用[J]. 浙江大学学报(理学版), 2015, 42(6): 637-643.