Please wait a minute...
浙江大学学报(理学版)  2018, Vol. 45 Issue (4): 436-449    DOI: 10.3785/j.issn.1008-9497.2018.04.011
化学     
应用于Suzuki偶联反应的金属催化剂研究进展
胡玲君1,2, 聂晶晶1
1. 浙江大学 化学系, 浙江 杭州 310027;
2. 中节能大地(杭州)环境修复有限公司, 浙江 杭州 310020
The development of metallic catalysts for Suzuki cross-coupling reaction.
HU Lingjun1,2, NIE Jingjing1
1. Department of Chemistry, Zhejiang University, Hangzhou 310027, China;
2. CECDADI(Hangzhou) Environmental Remediation Co., Ltd. Hangzhou 310020
 全文: PDF(4371 KB)   HTML  
摘要: Suzuki偶联反应是用于选择性构建C-C键的最通用、最有效的反应之一,特别是用于形成联芳基时非常有效.应用于Suzuki偶联反应的金属催化剂可分为均相和非均相催化剂两大类,均相催化剂的金属配体对催化性能有极强的影响;而非均相催化剂,对催化性能有重要影响的是载体.首先介绍了膦配体与氮配体,分别讨论了其催化活性,其中有些配体展现了极高的性能.还讨论了MOFs聚合物等传统载体和新型载体.最后展望了配体与载体在Suzuki偶联反应中的应用前景.
关键词: 配体载体Suzuki偶联反应    
Abstract: The Suzuki coupling reaction is one of the most versatile and utilized reactions for the selective construction of carbon-carbon bonds, in particular for the formation of biaryls. Homogeneous and heterogeneous metallic catalysts are commonly used in Suzuki cross-coupling reactions. Moreover, ligands and supports play a critical role respectively in homogeneous and heterogeneous metallic catalysts.We begin the review with the development of phosphine and nitrogen-based ligands, then discuss the activities of homogeneous catalysts containing phosphine and nitrogen-based ligands, some ligands reveal the incredible activities.Next, we turn to focus on the traditional supports and novel supports, and find novel supports shows fabulous performance than the traditional supports. We summarise the significance of ligands and supports, their perspectives for further developments of Suzuki cross-coupling reactions.
Key words: ligands    supports    Suzuki cross-coupling
收稿日期: 2017-06-17 出版日期: 2018-07-12
CLC:  O643.3  
作者简介: 胡玲君(1988-),女,ORCID:http:/orcid.org/0000-0002-3471-0364,硕士,工程师,主要从事环境土壤修复研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
胡玲君
聂晶晶

引用本文:

胡玲君, 聂晶晶. 应用于Suzuki偶联反应的金属催化剂研究进展[J]. 浙江大学学报(理学版), 2018, 45(4): 436-449.

HU Lingjun, NIE Jingjing. The development of metallic catalysts for Suzuki cross-coupling reaction.. Journal of Zhejiang University (Science Edition), 2018, 45(4): 436-449.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2018.04.011        https://www.zjujournals.com/sci/CN/Y2018/V45/I4/436

[1] SCHEUERMANN G M, RUMI L, STEURER P, et al. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction[J]. Journal of the American Chemical Society, 2009, 131(23):8262-8270.
[2] FÉREY G, MELLOT-DRAZNIEKS C, SERRE C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743):2040-2042.
[3] DINGS Y, GAO J, WANG Q, et al. Construction of covalent organic framework for catalysis:Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction[J]. Journal of the American Chemical Society, 2011, 133(49):19816-19822.
[4] YUN G, HASSAN Z, LEE J, et al. Highly stable, water-dispersible metal-nanoparticle-decorated polymer nanocapsules and their catalytic applications[J]. Angewandte Chemie-International Edition, 2014, 53(25):6414-6418.
[5] CAMPIE M, JACKSON W R, MARCUCCIO S M, et al. High yields of unsymmetrical biaryls via cross-coupling of arylboronic acids with haloarenes using a modified Suzuki-Beletskaya procedure[J]. Journal of the Chemical Society-Chemical Communications, 1994, 20:2395-2395.
[6] VENKATRAMAN S, HUANG T S, LI C J. Carbon-carbon bond formation via palladium-catalyzed reductive coupling of aryl halides in air and water[J]. Advanced Synthesis & Catalysis, 2002, 344(43):399-405.
[7] YU C, HU B, LIU C, et al. Design, syntheses and photochromic properties of dithienylcyclopentene optical molecular switches[J]. Journal of Physical Organic Chemistry, 2017, 30(1):e3584.
[8] SI S, WANG C, ZHANG N, et al. Palladium-catalyzed room-temperature acylative Suzuki coupling of high-order aryl boron with carboxylic acids[J]. Journal of Organic Chemistry, 2016, 81(10):4364-4370.
[9] ARANYOS A, OLD D W, KIYOMORI A, et al. Novel electron-rich bulky phosphine ligands facilitate the palladium-catalyzed preparation of diaryl ethers[J]. Journal of the American Chemical Society, 1999, 121(18):4369-4378.
[10] ZAPF A, EHRENTRAUT A, BELLER M. A new highly efficient catalyst system for the coupling of nonactivated and deactivated aryl chlorides with arylboronic acids[J]. Angew Chem Int Ed Engl, 2000, 39(22):4153-4155.
[11] PARK C H, KWON Y J, OH I Y, et al. Synthesis of trisubstituted pyridines via chemoselective Suzuki-Miyaura coupling of 3,5- and 4,6-Dibromo-2-tosyloxypyridines[J]. Advanced Synthesis & Catalysis, 2017, 359(1):107-119.
[12] CHEN L, REN P,CARROW B P. Tri(1-adamantyl)phosphine:Expanding the boundary of electron-releasing character available to organophosphorus compounds[J]. Journal of the American Chemical Society, 2016, 138(20):6392-6395.
[13] XUE J Y, IKEMOTO K, TAKAHASHI N, et al. Cyclo-meta-phenylene revisited:Nickel-mediated synthesis, molecular structures, and device applications[J]. Journal of Organic Chemistry, 2014, 79(20):9735-9739.
[14] HOHL B, BERTSCHI L, ZHANG X, et al. Suzuki polycondensation toward high molecular weight poly(m-phenylene)s:Mechanistic insights and end-functionalization[J]. Macromolecules, 2012, 45(13):5418-5426.
[15] SUGITA H, NOJIMA M, OHTA Y, et al. Unusual cyclic polymerization through Suzuki-Miyaura coupling of polyphenylene bearing diboronate at both ends with excess dibromophenylene[J]. Chemical Communications, 2017, 53(2):396-399.
[16] BEN T, REN H, MA S, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area[J]. Angew Chem Int Ed Engl, 2009, 48(50):9457-9460.
[17] GUO J, LAI X, FU S, et al. Microporous organic polymers based on hexaphenylbiadamantane:Synthesis, ultra-high stability and gas capture[J]. Materials Letters, 2017, 187:76-79.
[18] KAKIUCHI F, KAN S, IGI K, et al. A ruthenium-catalyzed reaction of aromatic ketones with arylboronates:A new method for the arylation of aromatic compounds via C-H bond cleavage[J]. Journal of the American Chemical Society, 2003, 125(7):1698-1699.
[19] KAKIUCHI F, USUI M, UENO S, et al. Ruthenium-catalyzed functionalization of aryl carbon-oxygen bonds in aromatic ethers with organoboron compounds[J]. Journal of the American Chemical Society, 2004, 126(9):2706-2707.
[20] UENO S, MIZUSHIMA E, CHATANI N, et al. Direct observation of the oxidative addition of the aryl carbon-oxygen bond to a ruthenium complex and consideration of the relative reactivity between aryl carbon-oxygen and aryl carbon-hydrogen bonds[J]. Journal of the American Chemical Society, 2006, 128(51):16516-16517.
[21] TOBISU M, SHIMASAKI T, CHATANI N. Nickel-catalyzed cross-coupling of aryl methyl ethers with aryl boronic esters[J]. Angew Chem Int Ed Engl, 2008, 47(26):4866-4869.
[22] KUMAR L M, BHAT B R. Cobalt pincer complex catalyzed Suzuki-Miyaura cross coupling:A green approach[J]. Journal of Organometallic Chemistry, 2017, 827:41-48.
[23] ARDUENGO A J, HARLOW R L, KlINE M. A stable crystalline carbene[J]. Journal of the American Chemical Society, 1991, 113(1):361-363.
[24] ALTENHOFF G, GODDARD R, LEHMANN C W, et al. Sterically demanding, bioxazoline-derived N-heterocyclic carbene ligands with restricted flexibility for catalysis[J]. Journal of the American Chemical Society, 2004, 126(46):15195-15201.
[25] SCHOLL M, TRNKA T M, MORGAN J P, et al. Increased ring closing metathesis activity of ruthenium-based olefin metathesis catalysts coordinated with imidazolin-2-ylidene ligands[J]. Tetrahedron Letters, 1999, 40(12):2247-2250.
[26] SHI J C, CAO X H, ZHENG Y, et al. Synthesis of N-heterocyclic carbene palladacycle complexes and their applications to Buchwald-Hartwig reactions[J]. Acta Chimica Sinica, 2007, 65(16):1702-1706.
[27] STEINKE T, SHAW B K, JONG H, et al. Noninnocent behavior of ancillary ligands:Apparent trans coupling of a saturated N-Heterocyclic carbene unit with an ethyl ligand mediated by nickel[J]. Journal of the American Chemical Society, 2009, 131(30):10461-10466.
[28] GSTÖTTMAYR C W, BÖHM V P, HERDTWECK E, et al. A defined N-heterocyclic carbene complex for the palladium-catalyzed Suzuki cross-Coupling of aryl chlorides at ambient temperatures[J]. Angewandte Chemie, 2002, 41(8):1363-1365.
[29] ALTENHOFF G, GODDARD R, LEHMANN C W, et al. An N-heterocyclic carbene ligand with flexible steric bulk allows Suzuki cross-coupling of sterically hindered aryl chlorides at room temperature[J]. Angew Chem Int Ed Engl, 2003, 42(31):3690-3693.
[30] BEN H T, ZHANG W Y, YALAOUI I, et al. Palladium-catalyzed Suzuki-Miyaura coupling of aryl esters[J]. Journal of the American Chemistry Society, 2017, 139(3):1311-1318.
[31] BEGUM T, MONDAL M, BORPUZARI M P, et al. An immobilized symmetrical bis-(NHC) palladium complex as a highly efficient and recyclable Suzuki-Miyaura catalyst in aerobic aqueous media[J]. Dalton Trans, 2017, 46(2):539-546.
[32] PAHLEVANNESHAN Z, MOGHADAM M, MIRKHANI V, et al. A new N-heterocyclic carbene palladium complex immobilized on nano silica:An efficient and recyclable catalyst for Suzuki-Miyaura C-C coupling reaction[J]. Journal of Organometallic Chemistry, 2016, 809:31-37.
[33] OHTSUKI A, YANAGISAWA K, FURUKAWA T, et al. Nickel/N-Heterocyclic carbene-catalyzed Suzuki-Miyaura type cross-coupling of aryl carbamates[J]. Journal of Organic Chemistry, 2016, 81(19):9409-9414.
[34] ZAWARTKA W, GNIEWEK A,TRZECIAK A M. Palladium complexes with chiral imidazole ligands as potential catalysts for asymmetric C-C coupling reactions[J]. Inorganica Chimica Acta, 2017, 455:595-599.
[35] HUANG Z B, YAN X H, JIANG L C, et al. Efficient assembled Pd/C catalyst applied in Suzuki coupling reactions[J]. Chinese Journal of Catalysis, 2010, 31(1):90-94.
[36] KUMBHAR A, KAMBLE S, MANE A, et al. Modified zeolite immobilized palladium for ligand-free Suzuki-Miyaura cross-coupling reaction[J]. Journal of Organometallic Chemistry, 2013, 738:29-34.
[37] SINGHA S, SAHOO M, PARIDA K M. Highly active Pd nanoparticles dispersed on amine functionalized layered double hydroxide for Suzuki coupling reaction[J]. Dalton Transactions, 2011, 40(27):7130-7132.
[38] LIU Y, LI L, LIU S W, et al. Synthesis of silanized magnetic Ru/Fe3O4@SiO2 nanospheres and their high selectivity to prepare cis-pinane[J]. RSC Advances, 2016, 6(84):81310-81317.
[39] HOSSAIN S A M, BALBIN A, ERAMI S R, et al. Synthesis and study of the catalytic applications in C-C coupling reactions of hybrid nanosystems based on alumina and palladium nanoparticles[J]. Inorganica Chimica Acta, 2017, 455:645-652.
[40] NASROLLAHZADEH M, SAJADI S M. Green synthesis, characterization and catalytic activity of the Pd/TiO2 nanoparticles for the ligand-free Suzuki-Miyaura coupling reaction[J]. Journal of Colloid and Interface Science, 2016, 465:121-127.
[41] WEIRES N A, BAKER E L, GARG N K. Nickel-catalysed Suzuki-Miyaura coupling of amides[J]. Nature Chemistry, 2016, 8(1):75-79.
[42] SUN Y Y, YI J, LU X, et al. Cu-catalyzed Suzuki-Miyaura reactions of primary and secondary benzyl halides with arylboronates[J]. Chemical Communications, 2014, 50(75):11060-11062.
[43] KATRARIA M, PRAMANIK S, KAUR N, et al. Ferromagnetic alpha-Fe2O3 NPs:A potential catalyst in Sonogashira-Hagihara cross coupling and hetero-Diels-Alder reactions[J]. Green Chemistry, 2016, 18(6):1495-1505.
[44] MARCK G, VILLIGER A, BUCHECKER R. Aryl couplings with heterogeneous palladium catalysts[J]. Tetrahedron Letters, 1994, 35(20):3277-3280.
[45] LEBLOND C R, ANDREWS A T, SUN Y, et al. Activation of aryl chlorides for Suzuki cross-coupling by ligandless, heterogeneous palladium[J]. Organic Letters, 2001, 3(10):1555-1557.
[46] HEIDENREICH R G, KÖHLER K, KRAUTER J G E, et al. Pd/C as a highly active catalyst for heck, Suzuki and sonogashira reactions[J]. Synlett, 2002(7):1118-1122.
[47] ARCADI A, CERICHELLI G, CHIARINI M, et al. A mild and versatile method for palladium-catalyzed cross-coupling of aryl halides in water and surfactants[J]. European Journal of Organic Chemistry, 2003(20):4080-4086.
[48] LYSÉN M, KÖHLER K. Suzuki-Miyaura cross-coupling of aryl chlorides in water using ligandless palladium on activated carbon[J]. Synlett, 2005(11):1671-1674.
[49] XIA J W, FU Y S, HE G Y, et al. Core-shell-like Ni-Pd nanoparticles supported on carbon black as a magnetically separable catalyst for green Suzuki-Miyaura coupling reactions[J]. Applied Catalysis B:Environmental, 2017, 200:39-46.
[50] TAGATA T, NISHIDA M. Palladium charcoal-catalyzed Suzuki-Miyaura coupling to obtain arylpyridines and arylquinolines[J]. The Journal of Organic Chemistry, 2003, 68(24):9412-9415.
[51] TOEBES M L, LEE M K V D, TANG L M, et al. Preparation of carbon nanofiber supported platinum and ruthenium catalysts:Comparison of ion adsorption and homogeneous deposition precipitation[J]. The Journal of Physical Chemistry B, 2004, 108(31):11611-11619.
[52] LI F C, LIU Y S, MA T Q, et al. Catalysis of the hydrodechlorination of 4-chlorophenol and the reduction of 4-nitrophenol by Pd/Fe3O4@C[J]. New Journal of Chemistry, 2017, 41(10):4014-4021.
[53] KWON T H, CHO K Y, BAEK K Y, et al. Recyclable palladium-graphene nanocomposite catalysts containing ionic polymers:Efficient Suzuki coupling reactions[J]. RSC Advance, 2017, 7(19):11684-11690.
[54] DONG W H, CHENG S S, FENG C, et al. Carbon nanospheres with well-controlled nano-morphologies as support for palladium-catalyzed Suzuki coupling reaction[J]. Applied Organometallic Chemistry, 2017, 8(1):e3741.
[55] DEY R, SREEDHAR B, RANU B C. Molecular sieves-supported palladium(Ⅱ) catalyst:Suzuki coupling of chloroarenes and an easy access to useful intermediates for the synthesis of irbesartan, losartan and boscalid[J]. Tetrahedron, 2010, 66(13):2301-2305.
[56] STIJN V D V, YURIY R L. Metalloenzyme-like zeolites as Lewis acid catalysts for C-C bond formation[J]. Angew Chem Int Ed Engl, 2015, 54(43):12554-12561.
[57] ESMAEILPOUR M, JAVIDI J, DODEJI F N, et al. Fe3O4@SiO2-polymer-imid-Pd magnetic porous nanosphere as magnetically separable catalyst for Mizoroki-Heck and Suzuki-Miyaura coupling reactions[J]. Journal of the Iranian Chemical Society, 2014, 11(6):1703-1715.
[58] GALLON B J, KOJIMA R W, KANER R B, et al. Palladium nanoparticles supported on polyaniline nanofibers as a semi-heterogeneous catalyst in water[J]. Angew Chem Int Ed Engl, 2007, 46(38):7251-7254.
[59] ANDERSON K W, IKAWA T, TUNDEL R E, et al. The selective reaction of aryl halides with KOH:Synthesis of phenols, aromatic ethers, and benzofurans[J]. J Am Chem Soc, 2006, 128(33):10694-10695.
[60] RANGEL-RANGEL E, WEBER J, CAMPA J G D L, et al. Pluronic-assisted hydrothermal synthesis of microporous polyimides. Application as supports for heterogenized transition metal catalysts[J]. Microporous and Mesoporous Materials, 2017, 239:287-295.
[61] YU Y P, HU T J, CHEN X R, et al. Pd nanoparticles on a porous ionic copolymer:A highly active and recyclable catalyst for Suzuki-Miyaura reaction under air in water[J]. Chemical Communications, 2011, 47(12):3592-3594.
[62] ZAWARTKA W, POSPIECH P, CYPRYK M, et al. Carbonylative Suzuki-Miyaura coupling catalyzed by palladium supported on aminopropyl polymethylsiloxane microspheres under atmospheric pressure of CO[J]. Journal of Molecular Catalysis A:Chemical, 2016, 417:76-80.
[63] YE Y X, LIU W L,YE B H. A highly efficient and recyclable Pd(Ⅱ) metallogel catalyst:A new scaffold for Suzuki-Miyaura coupling[J]. Catalysis Communications, 2017, 89:100-105.
[64] DELL'ANNA M M, MALI M, MASTRORILLI P, et al. Suzuki-Miyaura coupling under air in water promoted by polymer supported palladium nanoparticles[J]. Journal of Molecular Catalysis A:Chemical, 2013, 366:186-194.
[65] BENAGLIA M. Recoverable and recyclable chiral organic catalysts[J]. New Journal of Chemistry, 2006, 30(11):1525-1533.
[66] LI J R, SCULLEY J, ZHOU H C. Metal-organic frameworks for separations[J]. Chemical Reviews, 2012, 112(2):869-932.
[67] KOH K, WONG-FOY A G, MATZGER A J. A porous coordination copolymer with over 5000 m2/g BET surface area[J]. Journal of the American Chemical Society, 2009, 131(12):4184-4185.
[68] XAMENA F X L I, ABAD A, CORMA A, et al. MOFs as catalysts:Activity, reusability and shape-selectivity of a Pd-containing MOF[J]. Journal of Catalysis, 2007, 250(2):294-298.
[69] YUAN B, PAN Y, LI Y, et al. A highly active heterogeneous palladium catalyst for the Suzuki-Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media[J]. Angew Chem Int Ed Engl, 2010, 49(24):4054-4058.
[70] HUPP J T, POEPPELMEIER K R. Chemistry. Better living through nanopore chemistry[J]. Science, 2005, 309(5743):2008-2009.
[71] BITA I, YANG J K, JUNG Y S, et al. Graphoepitaxy of self-assembled block copolymers on two-dimensional periodic patterned templates[J]. Science, 2008, 321(5891):939-943.
[72] PASCANU V, HANSEN P R, BERMEJO G A, et al. Highly functionalized biaryls via Suzuki-Miyaura cross-coupling catalyzed by Pd@MOF under batch and continuous flow regimes[J]. ChemSusChem, 2015, 8(1):123-130.
[73] DONG W, ZHANG L, WANG C, et al. Palladium nanoparticles embedded in metal-organic framework derived porous carbon:Synthesis and application for efficient Suzuki-Miyaura coupling reactions[J]. RSC Advances, 2016, 6(43):37118-37123.
[74] AUGUSTYNIAK A W, ZAWARTKA W, NAVARRO J A R, et al. Palladium nanoparticles supported on a nickel pyrazolate metal organic framework as a catalyst for Suzuki and carbonylative Suzuki couplings[J]. Dalton Transactions, 2016, 45(34):13525-13531.
[75] SUN R, LIU B, LI B G, et al. Palladium(Ⅱ)@zirconium-based mixed-linker metal-organic frameworks as highly efficient and recyclable catalysts for Suzuki and Heck cross-coupling reactions[J]. ChemCatChem, 2016, 8(20):3261-3271.
[76] ROSTAMNIA S, ALAMGHOLILOO H, LIU X. Pd-grafted open metal site copper-benzene-1,4-dicarboxylate metal organic frameworks (Cu-BDC MOF's) as promising interfacial catalysts for sustainable Suzuki coupling[J]. Journal of Colloid and Interface Science, 2016, 469:310-317.
[77] YANG Y, CONG D Y, HAO S J. Template-directed ordered mesoporous Silica@Palladium-containing Zinc metal-organic framework composites as highly efficient Suzuki coupling catalysts[J]. ChemCatChem, 2016, 8(5):900-905.
[78] SHANG N Z, FENG C, ZHANG H Y, et al. Suzuki-Miyaura reaction catalyzed by graphene oxide supported palladium nanoparticles[J]. Catalysis Communications, 2013, 40:111-115.
[79] QIN Y, LI J, KONG Y, et al. In situ growth of Au nanocrystals on graphene oxide sheets[J]. Nanoscale, 2014, 6(3):1281-1285.
[80] YAO Y, YANG Z, SUN H, et al. Hydrothermal synthesis of Co3O4-graphene for heterogeneous activation of peroxymonosulfate for decomposition of phenol[J]. Industrial & Engineering Chemistry Research, 2012, 51(46):14958-14965.
[81] FENG C, ZHANG H Y, SHANG N Z, et al. Magnetic graphene nanocomposite as an efficient catalyst for hydrogenation of nitroarenes[J]. Chinese Chemical Letters, 2013, 24(6):539-541.
[82] QI J, LYU W, ZHANG G, et al. A graphene-based smart catalytic system with superior catalytic performances and temperature responsive catalytic behaviors[J]. Nanoscale, 2013, 5(14):6275-6279.
[83] FAREGHI-ALAMDARI R, HAQIQI M G, ZEKRI N. Immobilized Pd(0) nanoparticles on phosphine-functionalized graphene as a highly active catalyst for Heck, Suzuki and N-arylation reactions[J]. New Journal of Chemistry, 2016, 40(2):1287-1296.
[84] BAI C, ZHAO Q S, LI Y, et al. Palladium complex immobilized on graphene oxide as an efficient and recyclable catalyst for Suzuki coupling reaction[J]. Catalysis Letters, 2014, 144(9):1617-1623.
[85] WANG C, SALMON L, CIGANDA R, et al. An efficient parts-per-million alpha-Fe2O3 nanocluster/graphene oxide catalyst for Suzuki-Miyaura coupling reactions and 4-nitrophenol reduction in aqueous solution[J]. Chemical Communications, 2017, 53(3):644-646.
[86] SHARMA V, KUMAR S, BAHUGUNA A, et al. Plant leaves as natural green scaffolds for palladium catalyzed Suzuki-Miyaura coupling reactions[J]. Bioinspiration & Biomimetics, 2017, 12(1):016010.
[87] LEBASCHI S, HEKMATI M,VEISI H. Green synthesis of palladium nanoparticles mediated by black tea leaves (Camellia sinensis) extract:Catalytic activity in the reduction of 4-nitrophenol and Suzuki-Miyaura coupling reaction under ligand-free conditions[J]. Journal of Colloid and Interface Science, 2017, 485:223-231.
[88] LICHTENEGGER G J, MAIER M, HACKL M, et al. Suzuki-Miyaura coupling reactions using novel metal oxide supported ionic palladium catalysts[J]. Journal of Molecular Catalysis A(Chemical), 2017, 426(part A):39-51.
[1] 陈辰, 费金华. 载体对负载型Zn催化剂上愈创木酚加氢脱氧(HDO)性能的影响[J]. 浙江大学学报(理学版), 2019, 46(5): 579-583.
[2] 张文生, 陆维敏, 陈平. 丙烷选择氧化制丙烯酸Mo-V-Te-Nb-O催化剂的Sb掺杂研究[J]. 浙江大学学报(理学版), 2019, 46(5): 584-588.
[3] 江银枝, 李静, 袁辉强, 陈燕慧. 核壳Fenton催化剂CuFe2O4@PDA-Cu的制备、表征及其活化H2O2降解染料的性能[J]. 浙江大学学报(理学版), 2018, 45(4): 450-460.
[4] 张群, 鲍玥, 周旻昀, 史宇滨, 邹骏华, 万先凯, 史惠祥. 高效BiOI/BiOBr可见光催化剂的制备、性能及机理研究[J]. 浙江大学学报(理学版), 2017, 44(4): 472-479.
[5] 王子宁, 应婷婷, 邵林军, 水淼, 齐陈泽. 戊二醛改性交联壳聚糖纳米纤维膜负载钯催化剂的制备及其催化性能研究[J]. 浙江大学学报(理学版), 2017, 44(1): 70-75.
[6] 钟少锋, 区琼荣. 植酸修饰聚乙烯醇纤维膜负载钯催化剂的制备及其性能研究[J]. 浙江大学学报(理学版), 2016, 43(3): 321-324.