Please wait a minute...
浙江大学学报(理学版)  2017, Vol. 44 Issue (6): 675-681    DOI: 10.3785/j.issn.1008-9497.2017.06.006
环境科学     
无机砷影响蛋白核小球藻光合活性的特征研究
许荔萍1, 周昉1, 冯宁2, 张建英1
1. 浙江大学 环境与资源学院, 浙江 杭州 310058;
2. 杭州市环境保护科学研究院, 浙江 杭州 310014
Influence of inorganic arsenic on photosynthetic activity of Chlorella pyrenoidosa
XU Liping1, ZHOU Fang1, FENG Ning2, ZHANG Jianying1
1. Institute of Environmental Science, Zhejiang University, Hangzhou 310058, China;
2. Hangzhou Institute of Environmental Science, Hangzhou 310014, China
 全文: PDF(4043 KB)   HTML  
摘要: 采用蛋白核小球藻(Chlorella pyrenoidosa)进行无机砷毒性暴露实验,分析As (Ⅲ)和As (V)对蛋白核小球藻光合活性的影响差异.结果表明:该藻对无机砷具有较强的耐受性,在砷浓度大于37.5 mg·L-1暴露条件下,小球藻叶绿素a合成、光系统Ⅱ (PSⅡ)最大光量子产量(Fv/Fm)、实际光量子产量(Yield)及相关参数与无机砷浓度呈显著负相关,As (Ⅲ)对小球藻光合活性抑制作用显著高于As (V).As (Ⅲ)和As (V)150.0 mg·L-1暴露96 h对小球藻光系统Ⅱ影响差异最大,Fv/Fm、Yield、rETRmax和线性斜率(α)分别降低了77%,91%,92%,85%和19%,50%,51%,23%.透射电镜进一步表明,小球藻亚细胞结构形态受砷胁迫出现叶绿体片层间空泡化、类囊体基粒片层受挤压、蛋白核缩小及脂质滴.As (Ⅲ)对蛋白核小球藻光系统Ⅱ (PSⅡ)抑制作用大于As (V),可为深入了解无机砷对淡水微藻光合活性的影响机理提供一定的参考.
关键词: 无机砷蛋白核小球藻叶绿素荧光透射电镜    
Abstract: The arsenic contamination in aquatic environment has drawn significant attention to ecotoxic risk. The valence states of arsenic including arsenite[As(Ⅲ)] and arsenate[As(V)] play an important role for their behavior and toxicity at different levels of exposure concentrations. In this study, the toxicity of different concentrations of As(Ⅲ) and As(V) to Chlorella pyrenoidosa was determined and compared based on four different test endpoints:The growth inhibition rate, the chlorophyll a (Chl a) concentration, the chlorophyll fluorescence parameters of photosystem Ⅱ (PSⅡ) and the ultra-structural morphology of cells. The EC50 values of As(V) were higher than As(Ⅲ), which indicated that As(Ⅲ) was more toxic to C. pyrenoidosa than As(V). The Chl a concentration of C. pyrenoidosa treated by As(V) was higher than that treated by As(Ⅲ). In general, the chlorophyll fluorescence parameters including the maximum quantum yields (Fv/Fm), the effective quantum yields (Yield), the maximum electron transport rate (rETRmax) and the linear section slope (α) of C. pyrenoidosa treated by 150.0 mg·L-1 As(Ⅲ) for 96 h were decreased by 77%, 91%, 92% and 85%, which was higher than that exposed to As(V) of 19%, 50%, 51% and 23%, respectively, and chlorophyll fluorescence parameters were inhibited by high concentrations of both arsenic. The ultrastructural morphology of cells grown in the two species arsenic was observed by transmission electron microscopy. The cell wall separated from the cell membrane, accumulated starch granules were observed in the chloroplast, and diminishing pyrenoid and some lipid droplets were also observed in the cytoplasm. The mechanism of arsenite and arsenate toxicity to C. pyrenoidosa was explored, and the inhibition of PSⅡ photosynthetic efficiency to C. pyrenoidosa was determined. These results will help to develop an understanding of the biologically mediated environmental processes of arsenite and arsenate.
Key words: inorganic Arsenic    Chlorella pyrenoidosa    chlorophyll fluorescence    transmission electron microscopy
收稿日期: 2017-03-31 出版日期: 2018-04-09
CLC:  X172  
基金资助: 国家自然科学基金资助项目(21477103).
通讯作者: 张建英,ORCID:http://orcid.org/0000-0002-1636-5544,E-mail:zjy@zju.edu.cn.     E-mail: zjy@zju.edu.cn
作者简介: 许荔萍(1990-),ORCID:http://orcid.org/0000-0002-2855-422X,女,硕士,主要从事水生态毒理学研究,E-mail:21314017@zju.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
许荔萍
周昉
冯宁
张建英

引用本文:

许荔萍, 周昉, 冯宁, 张建英. 无机砷影响蛋白核小球藻光合活性的特征研究[J]. 浙江大学学报(理学版), 2017, 44(6): 675-681.

XU Liping, ZHOU Fang, FENG Ning, ZHANG Jianying. Influence of inorganic arsenic on photosynthetic activity of Chlorella pyrenoidosa. Journal of ZheJIang University(Science Edition), 2017, 44(6): 675-681.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2017.06.006        https://www.zjujournals.com/sci/CN/Y2017/V44/I6/675

[1] CULLEN W R, REIMER K J. Arsenic speciation in the environment[J]. Chemical Reviews, 1989, 89(4):713-764.
[2] WANG Y, WANG S, XU P P, et al. Review of arsenic speciation, toxicity and metabolism in microalgae[J]. Reviews in Environmental Science and Bio/Technology, 2015, 14(3):427-451.
[3] GILOTEAUX L, DURAN R, CASIOT C, et al. Three-year survey of sulfate-reducing bacteria community structure in Carnoules acid mine drainage (France), highly contaminated by arsenic[J]. FEMS Microbiology Ecology, 2013, 83(3):724-737.
[4] SCHALLER J, MKANDAWIRE M, DUDEL E G. Heavy metals and arsenic fixation into freshwater organic matter under Gammarus pulex L. influence[J]. Environmental Pollution, 2010, 158(7):2454-2458.
[5] WANG S Z, ZHANG D Y, PAN X L. Effects of arsenic on growth and photosystem Ⅱ (PSⅡ) activity of Microcystis aeruginosa[J]. Ecotoxicology and Environmental Safety, 2012, 84(7):104-111.
[6] DUESTER L, GEEST V D H, MOELLEKEN S, et al. Comparative phytotoxicity of methylated and inorganic arsenic and antimony species to Lemna minor, Wolffia arrhiza and Selenastrum capricornutum[J]. Microchemical Journal, 2011, 97(1):30-37.
[7] NEFF J M. Ecotoxicology of arsenic in the marine environment[J]. Environmental Toxicology and Chemistry, 1997, 16(5):917-927.
[8] BAHAR M M, MEGHARAJ M, NAIDU R. Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp[J]. Environmental Science and Pollution Research, 2016, 23(3):2663-2668.
[9] 秦晓春, SUGA M, 匡廷云, 等. 高等植物光系统I-捕光天线I (PSI-LHCI)超分子复合物的晶体结构和能量传递途径[J]. 科学通报, 2016, 16(19):2163-2175. QIN X C, SUGA M, KUANG T Y, et al. Crystal structure of plant PSI-LHCI supercomplex and its energy transfer mechanism[J]. Chinese Science Bulletin, 2016, 61(19):2163-2175.
[10] UMENA Y, KAWAKAMI K, SHEN J R, et al. Crystal structure of oxygen-evolving photosystem Ⅱ at a resolution of 1.9 A[J]. Nature, 2011, 473(7345):55-60.
[11] RITCHIE R J, MEKJINDA N. Arsenic toxicity in the water weed Wolffia arrhiza measured using pulse amplitude modulation fluorometry (PAM) measurements of photosynthesis[J]. Ecotoxicology and Environmental Safety, 2016, 132:178-185.
[12] ZHANG J H, WANG J, FENG J, et al. Toxic effects of 1,4-dichlorobenzene on photosynthesis in Chlorella pyrenoidosa[J]. Environmental Monitoring and Assessment, 2016, 188(9):526-536.
[13] 丁腾达, 倪婉敏, 张建英. 硅藻重金属污染生态学研究进展[J]. 应用生态学报, 2012, 23(3):857-866. DING T D, NI W M, ZHANG J Y. Research advances in heavy metals pollution ecology of diatom[J]. Chinese Journal of Applied Ecology, 2012, 23(3):857-866.
[14] ZHANG M, KONG F X, WU X D, et al. Different photochemical responses of phytoplankters from the large shallow Taihu Lake of subtropical China in relation to light and mixing[J]. Hydrobiologia, 2008, 603(1):267-278.
[15] RALPH P J, GADEMANN R. Rapid light curves:A powerful tool to assess photosynthetic activity[J]. Aquatic Botany, 2005, 82(3):222-237.
[16] ROCCHETTA I, MAZZUCA M, CONFORTI V, et al. Effect of chromium on the fatty acid composition of two strains of Euglena gracilis[J]. Environmental Pollution, 2006, 141(2):353-358.
[17] BJÖRKMAN O, DEMMIG B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins[J]. Planta, 1987, 170(4):489-504.
[18] MALLICK N, MOHN F H. Use of chlorophyll fluorescence in metal-stress research:A case study with the green microalga Scenedesmus[J]. Ecotoxicology and Environmental Safety, 2003, 55(1):64-69.
[19] 匡廷云. 光合作用原初光能转化过程的原理与调控[M]. 南京:江苏科学技术出版社, 2003:360-362. KUANG T Y. Mechanism and Regulation of Primary Energy Conversion Process in Photosynthesis[M]. Nanjing:Jiangsu Science and Technology Press, 2003:360-362.
No related articles found!