Please wait a minute...
J Zhejiang Univ (Med Sci)  2020, Vol. 49 Issue (6): 743-749    DOI: 10.3785/j.issn.1008-9292.2020.12.09
    
Differentially expressed inflammatory proteins in acute gouty arthritis based on protein chip
SUN Guanghan1(),LIU Jian1,*(),WAN Lei1,LIU Wei2,LONG Yan1,BAO Bingxi1,ZHANG Ying1
1. Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
2. Department of Rheumatology and Immunology, the First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
Download: HTML( 11 )   PDF(1196KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To detect the differentially expressed inflammatory proteins in acute gouty arthritis (AGA) with protein chip. Methods: The Raybiotech cytokine antibody chip was used to screen the proteomic expression in serum samples of 10 AGA patients and 10 healthy individuals. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were applied to determine the biological function annotation of differentially expressed proteins and the enrichment of signal pathways. ELISA method was used to verify the differential protein expression in 60 AGA patients and 60 healthy subjects. The ROC curve was employed to evaluate the diagnostic value of differential proteins in AGA patients. Results: According to|log2FC|>log2 1.2 and corrected P < 0.01, 4 most differentially expressed proteins in AGA patients were identified, including tumor necrosis factor receptor super family members Ⅱ (TNF RⅡ), macrophage inflammatory protein 1β (MIP-1β), interleukin-8 (IL-8), and granulocyte-macrophage colony stimulating factor (GM-CSF). GO and KEGG enrichment analysis showed that the differentially expressed proteins were related to inflammation, metabolism and cytokine pathways. The ELISA results showed that serum levels of differentially expressed proteins were significantly different between AGA patients and healthy subjects(all P < 0.01). ROC curve analysis showed that the areas under the curve (AUCs) of GM-CSF, IL-8, MIP-1β and TNF RⅡ for predicting AGA were 0.657 (95% CI: 0.560-0.760, sensitivity: 68.33%, specificity: 50.00%), 0.994 (95% CI: 0.980-1.000, sensitivity: 100.00%, specificity: 61.67%), 0.980 (95% CI: 0.712-0.985, sensitivity: 95.00%, specificity: 98.33%) and 0.965 (95% CI: 0.928-1.000, sensitivity: 100.00%, specificity: 10.00%), respectively. Conclusion: Proteomics can be applied to identify the biomarkers of AGA, which may be used for risk prediction and diagnosis of AGA patients.



Key wordsAcute gouty arthritis      Proteomics      Inflammatory function      Biomarkers     
Received: 09 September 2020      Published: 14 January 2021
CLC:  R589.7  
Corresponding Authors: LIU Jian     E-mail: 751728613@qq.com;liujianahzy@126.com
Cite this article:

SUN Guanghan,LIU Jian,WAN Lei,LIU Wei,LONG Yan,BAO Bingxi,ZHANG Ying. Differentially expressed inflammatory proteins in acute gouty arthritis based on protein chip. J Zhejiang Univ (Med Sci), 2020, 49(6): 743-749.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2020.12.09     OR     http://www.zjujournals.com/med/Y2020/V49/I6/743


急性痛风性关节炎致炎蛋白的蛋白质组学研究

目的: 基于血清的蛋白质组学识别有炎症功能的蛋白质信号,为临床诊断急性痛风性关节炎(AGA)寻找生物标志物。方法: 运用RayBiotech细胞因子抗体芯片检测并筛选10例AGA患者和10名健康志愿者血清标本的差异表达蛋白质。进行基因本体(GO)和京都基因与基因组百科全书(KEGG)富集分析,确定差异表达蛋白质的生物学功能注释及信号通路的富集。ELISA法检测差异蛋白质在60例AGA患者和60名健康志愿者中的表达。构建ROC曲线以评估差异表达蛋白质对AGA的诊断价值。结果: 确定了AGA患者4种表达差异最显著的蛋白质,包括肿瘤坏死因子受体Ⅱ(TNF RⅡ)、巨噬细胞炎性蛋白1β(MIP-1β)、IL-8、粒细胞巨噬细胞集落刺激因子(GM-CSF)。富集分析结果表明,差异表达蛋白质与炎症、代谢及细胞因子通路等相关。AGA患者和健康者血清中差异表达蛋白质的表达水平差异均有统计学意义(均P < 0.01)。ROC曲线分析结果显示,GM-CSF预测AGA的AUC为0.657(95% CI:0.560~0.760),敏感度为68.33%,特异度为50.00%;IL-8预测AGA的AUC为0.994(95% CI:0.980~1.000),敏感度为100.00%,特异度为61.67%;MIP-1β预测AGA的AUC为0.980(95% CI:0.712~0.985),敏感度为95.00%,特异度为98.33%;TNF RⅡ预测AGA的AUC为0.965(95% CI:0.928~1.000),敏感度为100.00%,特异度为10.00%。结论: 采用蛋白质组学的方法可以识别AGA的生物标志物,有助于AGA的风险预测和诊断。


关键词: 急性痛风性关节炎,  蛋白质组学,  致炎功能,  生物标志物 
编号 蛋白质名称 AGA组 健康对照组 Log2差异倍数 P
1 IL-8 2.65 0.97 1.68 0.00
2 TNF RⅡ 12.53 12.04 0.49 0.00
3 TIMP-2 13.27 13.07 0.19 0.00
4 MIP-1β 5.96 4.61 1.35 0.00
5 GM-CSF 0.16 1.34 -1.18 0.00
6 IL-6 R 10.74 10.58 0.15 0.01
7 TNF RI 12.98 12.59 0.39 0.01
8 B7-H1 1.75 4.52 -2.77 0.02
9 PD-L2 1.34 4.87 -3.53 0.03
10 IL-4 0.11 1.72 -1.62 0.02
11 PDGF-BB 13.23 13.05 0.17 0.03
12 RANTES 11.21 11.09 0.12 0.03
13 IL-7 1.52 2.36 -0.84 0.06
14 ICOS 6.59 8.99 -2.40 0.10
15 PD-L1 2.77 4.46 -1.69 0.12
16 Eotaxin-2 7.17 7.63 -0.46 0.14
17 IFNG 0.83 1.78 -0.95 0.15
18 IL-1ra 6.70 6.09 0.61 0.14
19 IL-5 0.91 2.15 -1.23 0.14
20 MIP-1α 8.30 7.69 0.61 0.15
21 TNFα 0.68 2.15 -1.47 0.12
22 IL-12 p70 0.02 0.29 -0.27 0.16
23 CTLA-4 4.75 6.20 -1.45 0.19
24 GCSF 4.31 5.45 -1.14 0.20
25 IL-16 5.84 5.08 0.76 0.20
26 MIG 6.64 5.63 1.01 0.18
27 TIMP-1 11.78 11.66 0.12 0.19
28 IL-13 0.15 0.71 -0.56 0.24
29 MIP-1δ 10.57 10.70 -0.13 0.24
30 TNFβ 0.56 1.99 -1.43 0.23
31 I-309 2.44 3.31 -0.87 0.26
32 BLC 4.68 4.28 0.40 0.29
33 B7-H2 10.83 10.41 0.43 0.34
34 IL-12 p40 6.27 5.86 0.40 0.35
35 MCP-1 6.34 6.63 -0.29 0.39
36 IL-2 2.26 3.25 -0.99 0.44
37 B7-H3 8.35 8.66 -0.31 0.53
38 IL-1α 8.00 8.08 -0.07 0.54
39 PD-1 8.26 8.63 -0.38 0.60
40 ICAM-1 13.55 13.50 0.05 0.59
41 IL-11 1.03 1.57 -0.54 0.59
42 Eotaxin 6.68 6.81 -0.13 0.67
43 IL-6 1.99 1.71 0.29 0.65
44 IL-15 1.72 2.03 -0.31 0.67
45 IL-10 1.37 1.26 0.10 0.69
46 IL-17 1.39 1.21 0.17 0.80
47 B7-2 7.81 7.98 -0.17 0.83
48 CD28 4.33 4.16 0.17 0.91
49 IL-1β 2.84 2.80 0.04 0.95
50 M-CSF 0.00 0.00 0.00 0.00
Tab 1 Expression of 50 proteins in patients with acute gouty arthritis (AGA) and healthy controls
Fig 1 Bioinformatics analysis of different protein expression levels in AGA patients and controls detected by microarrays
Fig 2 Serum levels of differentially expressed proteins in patients with acute gouty arthritis (AGA) and healthy controls
Fig 3 ROC curve analysis of differentially expressed proteins between the acute gouty arthritis (AGA) group and the control group
[1]   ZHANG Y , ZHANG N , SONG H et al. Design, characterization and comparison of transdermal delivery of colchicine via borneol-chemically-modified and borneol-physically-modified ethosome[J]. Drug Deliv, 2019, 26 (1): 70- 77
doi: 10.1080/10717544.2018.1559258
[2]   TAO J H , ZHANG Y , LI X P . P2X7R: a potential key regulator of acute gouty arthritis[J]. Semin Arthritis Rheum, 2013, 43 (3): 376- 380
doi: 10.1016/j.semarthrit.2013.04.007
[3]   徐治波, 刁祖蓉, 王小霞 et al. 痛风性关节炎急性发作期血尿酸水平的变化[J]. 四川医学, 2001, 22 (9): 824- 825
XU Zhibo , DIAO Zurong , WANG Xiaoxia et al. Changes of serum uric acid level in acute gouty arthritis[J]. Sichuan Medical Jouranl, 2001, 22 (9): 824- 825
[4]   LIU Y , YIN H , CHEN K . Platelet proteomics and its advanced application for research of blood stasis syndrome and activated blood circulation herbs of Chinese medicine[J]. Sci China Life Sci, 2013, 56 (11): 1000- 1006
doi: 10.1007/s11427-013-4551-8
[5]   NEOGI T , JANSEN T L , DALBETH N et al. 2015 Gout classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative[J]. Ann Rheum Dis, 2015, 74 (10): 1789- 1798
doi: 10.1136/annrheumdis-2015-208237
[6]   胡凡同, 王全金 . 痛风性关节炎68例误诊分析[J]. 中国基层医药, 2003, 10 (4): 79- 80
HU Fantong , WANG Quanjin . Misdiagnosis analysis of 68 cases of gouty arthritis[J]. Chinese Journal of Primary Medicine And Pharmacy, 2003, 10 (4): 79- 80
[7]   NABIEVA D A , ARIPOV A N . The detection of proteomic markers and immunologic profile and their relationship with metabolic parameters in patients with gout[J]. Klin Lab Diagn, 2017, 62 (8): 485- 489
doi: 10.18821/0869-2084-2017-8-485-489
[8]   YE M H , BAO H , MENG Y et al. Comparative transcriptomic analysis of porcine peripheral blood reveals differentially expressed genes from the cytokine-cytokine receptor interaction pathway related to health status[J]. Genome, 2017, 60 (12): 1021- 1028
doi: 10.1139/gen-2017-0074
[9]   MOSIALOS G . Cytokine signaling and Epstein-Barr virus-mediated cell transformation[J]. Cytokine Growth Factor Rev, 2001, 12 (2-3): 259- 270
doi: 10.1016/s1359-6101(00)00035-6
[10]   DAI Y J , LI Y Y , ZENG H M et al. Effect of pharmacological intervention on MIP-1α, MIP-1β and MCP-1 expression in patients with psoriasis vulgaris[J]. Asian Pac J Trop Med, 2014, 7 (7): 582- 584
doi: 10.1016/S1995-7645(14)60098-5
[11]   HIROTA M , MORO O . MIP-1beta, a novel biomarker for in vitro sensitization test using human monocytic cell line[J]. Toxicol In Vitro, 2006, 20 (5): 736- 742
doi: 10.1016/j.tiv.2005.10.013
[12]   SCANU A , OLIVIERO F , GRUAZ L et al. Synovial fluid proteins are required for the induction of interleukin-1β production by monosodium urate crystals[J]. Scand J Rheumatol, 2016, 45 (5): 384- 393
doi: 10.3109/03009742.2015.1124452
[13]   QADRI M , JAY G D , ZHANG L X et al. Recombinant human proteoglycan- 4 reduces phagocytosis of urate crystals and downstream nuclear factor kappa B and inflammasome activation and production of cytokines and chemokines in human and murine macrophages[J]. Arthritis Res Ther, 2018, 20 (1): 192
doi: 10.1186/s13075-018-1693-x
[14]   WU M , TIAN Y , WANG Q et al. Gout: a disease involved with complicated immunoinflammatory responses: a narrative review[J]. Clin Rheumatol, 2020, 39 (10): 2849- 2859
doi: 10.1007/s10067-020-05090-8
[15]   LOUIS C , SOUZA-FONSECA-GUIMARAES F , YANG Y et al. NK cell-derived GM-CSF potentiates inflammatory arthritis and is negatively regulated by CIS[J]. J Exp Med, 2020, 217 (5):
doi: 10.1084/jem.20191421
[16]   LOUIS C , SOUZA-FONSECA-GUIMARAES F , YANG Y et al. Correction: NK cell-derived GM-CSF potentiates inflammatory arthritis and is negatively regulated by CIS[J]. J Exp Med, 2020, 217 (5):
doi: 10.1084/jem.2019142103192020c
[17]   LI F , CAO Y , LI J et al. The clinical significance of serum adipocytokines level in patients with lung cancer[J]. J Thorac Dis, 2019, 11 (8): 3547- 3555
doi: 10.21037/jtd.2019.07.66
[1] ZHANG Yunzhu, ZHU Chunpeng, LU Xinliang. Advances in serum biomarkers for early diagnosis of gastric cancer[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 326-333.
[2] WU Binbin,YANG Yi. Biomarkers of cardiac surgery-associated acute kidney injury: a narrative review[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 224-229.
[3] YAO Guorong,FU Yunfeng,LI Yanli,ZHOU Caiyun,LV Weiguo. Expression and clinical significance of DNAJB11 in epithelial ovarian cancer[J]. J Zhejiang Univ (Med Sci), 2017, 46(2): 173-178.
[4] . Application of serum protein fingerprint in diagnosis of pancreatic cancer[J]. J Zhejiang Univ (Med Sci), 2012, 41(3): 289-297.