Please wait a minute...
J Zhejiang Univ (Med Sci)  2020, Vol. 49 Issue (6): 714-724    DOI: 10.3785/j.issn.1008-9292.2020.12.06
    
Study on the mechanism of Flos Puerariae and Semen Hoveniae in treatment of alcoholic liver injury based on network pharmacology and molecular docking
WANG Yanan1(),YAN Xiaoming2(),ZHANG Qingyu1,SONG Aihua1,HAN Fei1,*()
1. School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
2. Department of Orthopedics, Jining Rencheng District People's Hospital, Jining 272000, Shandong Province, China
Download: HTML( 8 )   PDF(1337KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To explore the mechanism of Flos Puerariae and Semen Hoveniae in treatment of alcoholic liver injury (ALI) based on network pharmacology and molecular docking. Methods: The information of chemical constituents and targets of Flos Puerariae and Semen Hoveniae was collected from TCMSP and Swiss databases, and the threshold values of oral bioavailability (OB) ≥ 30%, drug likeness (DL) ≥0.18 were used to screen the potential active compounds. The GeneCard and DrugBank databases were used to obtain the targets corresponding to ALI. The common targets were queried using Venn Diagram, and the network of PPI and Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed through DAVID and Reactome database. Autodock Vina software was used for molecular docking of potential ingredients and key targets. Results: A total of 21 potential active compounds and 431 therapeutic targets were gathered in Flos Puerariae and Semen Hoveniae, which involved 273 biological functions, 90 KEGG pathways and 362 Reactome pathways. The GO functions involved protein binding, ATP binding, etc.; the KEGG pathways mainly included PI3K-Akt signaling pathway and TNF signaling pathway; the Reactome pathways contained signal transduction and immune system, etc. The results of molecular docking showed that 21 potential active ingredients had good affinity with the core targets Akt1, TP53 and IL-6. Conclusion: The network pharmacology and molecular docking analysis demonstrate the synergetic effect of Flos Puerariae and Semen Hoveniae with multi-compounds, multi-targets and multi-pathways in the treatment of ALI; and also predict the possible medicinal substance, key targets and pathways, which provides clues for the new drug development and mechanism research.



Key wordsAlcoholic liver injury      Flos Puerariae and Semen Hoveniae      Network pharmacology      Molecular docking      Mechanism     
Received: 11 October 2020      Published: 14 January 2021
CLC:  R285  
Corresponding Authors: HAN Fei     E-mail: 1334423511@qq.com;13854780111@163.com;hanfei_spu@163.com
Cite this article:

WANG Yanan,YAN Xiaoming,ZHANG Qingyu,SONG Aihua,HAN Fei. Study on the mechanism of Flos Puerariae and Semen Hoveniae in treatment of alcoholic liver injury based on network pharmacology and molecular docking. J Zhejiang Univ (Med Sci), 2020, 49(6): 714-724.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2020.12.06     OR     http://www.zjujournals.com/med/Y2020/V49/I6/714


基于网络药理学和分子对接技术探讨葛花-枳椇子治疗酒精性肝损伤的潜在作用机制

目的: 利用网络药理学和分子对接技术对葛花-枳椇子治疗酒精性肝损伤(ALI)的潜在作用机制进行研究。方法: 先利用中药系统药理学数据库与分析平台(TCMSP)和Swiss数据库搜集与葛花、枳椇子药材相关的化学成分及作用靶点,并以口服利用度(OB)≥30%和类药性(DL)≥0.18对化合物进行筛选;同时,使用GeneCard、DrugBank数据库获取与ALI相关的靶点,借助韦恩图映射葛花-枳椇子治疗ALI的潜在作用靶点,再采用String数据库和Cytoscape软件构建蛋白-蛋白相互作用网络及“药材-潜在活性成分-作用靶点”相互作用网络;接着在DAVID和Reactome数据库中对潜在作用靶点进行基因本体(GO)和京都基因与基因组百科全书(KEGG)通路富集分析;最后,使用AutoDock Vina软件将潜在活性成分与核心靶点进行分子对接验证。结果: 在葛花-枳椇子中,共筛选出21个与疾病相关的潜在活性成分和431个潜在作用靶点,涉及蛋白结合、ATP结合等273种生物功能及磷脂酰肌醇3-激酶-蛋白激酶B(PI3K-Akt)信号通路、TNF信号通路等90条KEGG代谢通路和信号转导、免疫系统等362条Reactome通路。分子对接结果显示,21个潜在活性成分与核心靶点蛋白激酶B(Akt)1、肿瘤蛋白p53(TP53)、IL-6均有较好的亲和力。结论: 本研究结果揭示了葛花-枳椇子治疗ALI的多成分、多靶点、多途径的作用特点,并预测了可能的药效物质、关键靶点和作用通路,为其新药开发和作用机制研究提供了理论基础。


关键词: 酒精性肝损伤,  葛花-枳椇子,  网络药理学,  分子对接,  作用机制 
序号 MOL ID 名称 分子式 口服生物利用度(%) 类药性 度值 介数值 来源
1 MOL000098 槲皮素 C15H10O7 46.43 0.28 201 0.3888 葛花、枳椇子
2 MOL000422 山柰酚 C15H10O6 41.88 0.24 130 0.1328 葛花、枳椇子
3 MOL004328 柚皮素 C15H12O5 59.29 0.21 101 0.1293 枳椇子
4 MOL004957 异芒柄花素 C16H12O4 38.37 0.21 96 0.1373 葛花
5 MOL001749 邻苯二甲酸二辛酯 C24H38O4 43.59 0.35 92 0.1902 葛花
6 MOL001792 甘草素 C15H12O4 32.76 0.18 86 0.0823 葛花
7 MOL012976 香豆雌酚 C15H8O5 32.49 0.34 73 0.0697 葛花
8 MOL000358 β-谷甾醇 C29H50O 36.91 0.75 71 0.0664 葛花、枳椇子
9 MOL000392 刺芒柄花素 C16H12O4 69.67 0.21 69 0.0505 葛花
10 MOL005916 尼泊尔鸢尾黄素 C17H14O6 37.78 0.30 67 0.0382 葛花
11 MOL008400 黄豆黄素 C16H12O5 50.48 0.24 65 0.0489 葛花
12 MOL000449 豆甾醇 C29H48O 43.83 0.76 64 0.0579 葛花、枳椇子
13 MOL000468 8-甲雷杜辛 C17H14O5 70.32 0.27 60 0.0285 葛花
14 MOL002959 3′-甲氧基大豆苷元 C16H12O5 48.57 0.24 55 0.0177 葛花
15 MOL000359 谷甾醇 C29H50O 36.91 0.75 43 0.0216 葛花
16 MOL008034 美洲茶酸 C30H46O5 73.52 0.77 33 0.0339 枳椇子
17 MOL011793 葛花亭 C16H14O5 55.25 0.24 24 0.0092 葛花
18 MOL011791 葛花苷 C28H32O15 46.91 0.67 12 0.0051 葛花
19 MOL003629 大豆苷元-4, 7-二葡萄糖苷 C27H30O14 47.27 0.67 8 0.0004 葛花
20 MOL013305 鹰嘴豆醇 C15H12O5 83.67 0.21 4 4.830-5 葛花
21 MOL002140 川芎哚 C16H12N2O2 65.95 0.27 3 6.703-5 枳椇子
Tab 1 Basic information of 21 potential active compounds in Flos Puerariae-Semen Hoveniae
Fig 1 Protein-protein interaction network of potential targets of Flos Puerariae-Semen Hoveniae in the treatment of alcoholic liver injury
Fig 2 The "herbs-active components-targets " interaction network of Flos Puerariae-Semen Hoveniae
Fig 3 Top 20 pathways in GO analysis
Fig 4 Top 20 pathways in KEGG analysis
Fig 5 Results of Reactome pathway analysis of Flos Puerariae-Semen Hoveniae in the treatment of alcoholic liver injury
通路 名称 基因数 P 错误发现率
R-HSA-162582 信号转导 246 1.11-16 1.73-14
R-HSA-168256 免疫系统 208 4.01-14 4.81-12
R-HSA-74160 基因表达 175 1.11-16 1.73-14
R-HSA-212436 基因转录途径 174 1.11-16 1.73-14
R-HSA-73857 RNA聚合酶Ⅱ转录 174 1.11-16 1.73-14
R-HSA-1280215 免疫系统中细胞因子的信号传导 156 1.11-16 1.73-14
R-HSA-1643685 疾病 136 1.77-03 8.84-03
R-HSA-449147 白细胞介素信号 124 1.11-16 1.73-14
R-HSA-556833 脂质代谢 91 4.50-04 3.15-03
R-HSA-168249 先天免疫系统 85 4.41-04 3.09-03
R-HSA-9006934 受体酪氨酸激酶信号转导 81 1.11-16 1.73-14
R-HSA-388396 G蛋白偶联受体下游信号 79 8.35-03 3.12-02
R-HSA-6785807 IL-4和IL-13信号转导 78 1.11-16 1.73-14
R-HSA-1266738 发育生物学 75 4.12-03 1.65-02
R-HSA-8953897 细胞对外界刺激的反应 65 4.22-08 1.35-06
R-HSA-109582 止血 64 1.28-05 1.41-04
R-HSA-2262752 细胞应激反应 64 3.75-08 1.20-06
R-HSA-9006931 核受体信号传递 62 1.11-16 1.73-14
R-HSA-1640170 细胞周期 60 5.46-06 6.55-05
R-HSA-5663202 生长因子受体和第二信使信号转导的疾病 57 1.62-10 1.06-08
Tab 2 Top 20 pathways in Reactome analysis
MOL ID 化合物 结合能
Akt1 TP53 IL-6
Akt:蛋白激酶B;TP53:肿瘤蛋白p53.
MOL000098 槲皮素 -38.04 -33.02 -31.35
MOL000358 β-谷甾醇 -33.44 -28.01 -26.75
MOL000359 谷甾醇 -44.31 -28.01 -30.10
MOL000392 刺芒柄花素 -40.13 -28.42 -28.84
MOL000422 山柰酚 -38.46 -30.10 -30.93
MOL000449 豆甾醇 -33.44 -28.84 -29.68
MOL000468 8-甲雷杜辛 -39.29 -26.33 -28.42
MOL001749 邻苯二甲酸二辛酯 -32.60 -21.74 -24.24
MOL001792 甘草素 -35.53 -30.10 -28.01
MOL002140 川芎哚 -40.13 -31.77 -29.68
MOL002959 3′-甲氧基大豆苷元 -40.13 -30.10 -29.68
MOL003629 大豆苷元-4, 7-二葡萄糖苷 -43.05 -33.02 -30.93
MOL004328 柚皮素 -31.35 -29.26 -28.42
MOL004957 异芒柄花素 -39.29 -28.42 -28.84
MOL005916 尼泊尔鸢尾黄素 -38.46 -29.26 -26.75
MOL008034 美洲茶酸 -34.28 -31.77 -30.93
MOL008400 黄豆黄素 -39.71 -30.10 -31.35
MOL011791 葛花苷 -45.56 -30.10 -32.19
MOL011793 葛花亭 -37.20 -28.84 -28.42
MOL012976 香豆雌酚 -43.47 -28.84 -31.35
MOL013305 鹰嘴豆醇 -36.37 -30.51 -30.10
Tab 3 Results of molecular docking of Flos Puerariae-Semen Hoveniae core compounds with AK1, TP53 and IL-6  (kJ/mol)
Fig 6 Molecular docking analysis of the potential active components of Flos Puerariae-Semen Hoveniae and the core targets
[1]   KARATAYLI E , HALL R A , WEBER S N et al. Effect of alcohol on the interleukin 6-mediated inflammatory response in a new mouse model of acute-on-chronic liver injury[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865 (2): 298- 307
doi: 10.1016/j.bbadis.2018.11.008
[2]   申绪芹, 李亚萍, 殷晓轩 . 酒精性肝病诊疗的新进展[J]. 中西医结合肝病杂志, 2020, 30 (3): 278- 282
SHEN Xuqin , LI Yaping , YIN Xiaoxuan . New progress in diagnosis and treatment of alcoholic liver disease[J]. Chinese Journal of Integrated Traditional and Western Medicine on Liver Diseases, 2020, 30 (3): 278- 282
doi: 10.3969/j.issn.1005-0264.2020.03.030
[3]   贾逸林, 李可欣, 杨冬晗 et al. miRNA在酒精性肝损伤中的作用研究进展[J]. 现代预防医学, 2020, 47 (6): 1130- 1132, 1141
JIA Yilin , LI Kexin , YANG Donghan et al. Role of miRNA in alcoholic liver injury[J]. Modern Preventive Medicine, 2020, 47 (6): 1130- 1132, 1141
[4]   张晓书, 韩飞, 朱鹤云 et al. 栀子大黄汤抗酒精性肝损伤的体内外实验[J]. 沈阳药科大学学报, 2016, 33 (7): 565- 571
ZHANG Xiaoshu , HAN Fei , ZHU Heyun et al. Experimental study on the effect of Zhi-Zi-Da-Huang decoction against alcoholic liver injury on cell and rats[J]. Journal of Shenyang Pharmaceutical University, 2016, 33 (7): 565- 571
[5]   LI Y , CHAO X , WANG S et al. Role of mechanistic target of rapamycin and autophagy in alcohol-induced adipose atrophy and liver injury[J]. Am J Pathol, 2020, 190 (1): 158- 175
doi: 10.1016/j.ajpath.2019.09.023
[6]   ALPINI G . Sphingosine lipid signaling in alcoholic liver injury[J]. Dig Liver Dis, 2019, 51 (8): 1164- 1165
doi: 10.1016/j.dld.2019.04.002
[7]   FRAZIER T H , STOCKER A M , KERSHNER N A et al. Treatment of alcoholic liver disease[J]. Therap Adv Gastroenterol, 2011, 4 (1): 63- 81
doi: 10.1177/1756283X10378925
[8]   南京中医药大学 . 中药大辞典[M]. 上海: 上海科技出版社, 2006: 90- 93
Nanjing University of Chinese Medicine . Dictionary of Chinese medicine[M]. Shanghai: Shanghai Science and Technology Publishing House, 2006: 90- 93
[9]   杨雪艳, 张楠, 闫丽晔 et al. 枳椇子药材HPLC指纹图谱及4种黄酮类成分的含量测定方法研究[J]. 沈阳药科大学学报, 2019, 36 (2): 130- 136
YANG Xueyan , ZHANG Nan , YAN Lihua et al. HPLC fingerprint and quantitative analysis of 4 flavonoids from Hovenia dulcis Thunb. seed[J]. Journal of Shenyang Pharmaceutical University, 2019, 36 (2): 130- 136
[10]   谢宗万, 于友岑 . 全国中草药名鉴:上册[M]. 北京: 人民卫生出版社, 1996: 554
XIE Zongwan , YU Youqin . National Chinese herbal medicine list: vol one[M]. Beijing: People's Medical Publishing House, 1996: 554
[11]   柳海艳, 王茜, 钟赣生 et al. 葛花枳椇子不同比例配伍对酒精性肝损伤大鼠肝组织病理形态影响的实验研究[J]. 中华中医药学刊, 2011, 29 (10): 2224- 2227
LIU Haiyan , WANG Xi , ZHONG Gansheng et al. Experimental study of different proportion of flos puerariae lobatae and hoveniae semoveniae semen on pathologic morphology of expermental rats with alcoholic liver disease[J]. Chinese Archives of Traditional Chinese Medicine, 2011, 29 (10): 2224- 2227
[12]   柳海艳.葛花枳椇子配伍对酒精性肝损伤的防治作用及机理探讨[D].北京: 北京中医药大学, 2011.
LIU Haiyan. Study on the preventive and therapeutic effect and mechanism of Flos Puerariae-Semen Hoveniae on alcoholic liver injury[D]. Beijing: Beijing University of Chinese Medicine, 2011. (in Chinese)
[13]   汪亚楠, 李思齐, 岳一强 et al. 基于网络药理学的苓桂术甘汤治疗阿尔茨海默病的潜在作用机制研究[J]. 中草药, 2019, 50 (23): 5812- 5822
WANG Yanan , LI Siqi , YUE Yiqiang et al. Potential mechanism of Linggui Zhugan decoction for treatment of Alzheimer's disease based on network pharmacology[J]. Chinese Traditional and Herbal Drugs, 2019, 50 (23): 5812- 5822
doi: 10.7501/j.issn.0253-2670.2019.23.024
[14]   刘乐平, 龙茜, 曹学帅 et al. 基于网络药理学和分子对接法探寻麻杏薏甘汤治疗新型冠状病毒肺炎(COVID-19)活性化合物的研究[J]. 中草药, 2020, 51 (7): 1741- 1749
LIU Leping , LONG Xi , CAO Xueshuai et al. Research on active compounds of Maxingyigan Decoction for treatment of coronavirus disease 2019 based on network pharmacology and molecular docking[J]. Chinese Traditional and Herbal Drugs, 2020, 51 (7): 1741- 1749
doi: 10.7501/j.issn.0253-2670.2020.07.008
[15]   周珊珊, 李伟男, 艾中柱 et al. 基于网络药理学和分子对接探讨清肺达原颗粒治疗新型冠状病毒肺炎(COVID-19)的作用机制[J]. 中草药, 2020, 51 (7): 1804- 1813
ZHOU Shanshan , LI Weinan , AI Zhongzhu et al. Investigating mechanism of Qingfei Dayuan Granules for treatment of COVID-19 based on network pharmacology and molecular docking[J]. Chinese Traditional and Herbal Drugs, 2020, 51 (7): 1804- 1813
doi: 10.7501/j.issn.0253-2670.2020.07.014
[16]   World Health Organization. Global status report on alcohol and health 2018[EB/OL].[2020-10-11]. https: //www.who.int/substance_ abuse/publications/global_alcohol_report/en/.
[17]   杨柳, 薄颖异, 于冰莉 et al. 中医药防治酒精性肝病概况及相关机制研究进展[J]. 中成药, 2020, 42 (3): 719- 726
YANG Liu , BO Yingyi , YU Bingli et al. Overview of prevention and treatment of alcoholic liver disease by Traditional Chinese medicine and progress in related mechanisms[J]. Chinese Traditional Patent Medicine, 2020, 42 (03): 719- 726
doi: 10.3969/j.issn.1001-1528.2020.03.032
[18]   殷晓轩, 尹常健 . 酒精性肝病中医用药规律探讨[J]. 中国实验方剂学杂志, 2011, 17 (12): 285- 287
YIN Xiaoxuan , YIN Changjian . Study on the law of traditional Chinese medicine for alcoholic liver disease[J]. China Journal of Experimental Traditional Medical Formulae, 2011, 17 (12): 285- 287
doi: 10.3969/j.issn.1005-9903.2011.12.085
[19]   INCE E . The protective effect of quercetin in the alcohol-induced liver and lymphoid tissue injuries in newborns[J]. Mol Biol Rep, 2020, 47 (1): 451- 459
doi: 10.1007/s11033-019-05148-0
[20]   CHEN L , DENG H , CUI H et al. Inflammatory responses and inflammation-associated diseases in organs[J]. Oncotarget, 2018, 9 (6): 7204- 7218
doi: 10.18632/oncotarget.23208
[21]   LI X , JIN Q , YAO Q et al. The flavonoid quercetin ameliorates liver inflammation and fibrosis by regulating hepaticmacrophages activation and polarization in mice[J]. Front Pharmacol, 2018, 9:72
doi: 10.3389/fphar.2018.00072
[22]   ZHU M L , ZHOU X F , ZHAO J P . Quercetin prevents alcohol-induced liver injury through targeting of PI3K/Akt/nuclear factor-κB and STAT3 signaling pathway[J]. Exp Ther Med, 2017, 14 (6): 6169- 6175
doi: 10.3892/etm.2017.5329
[23]   MARTINO R , CANALE F , SVLSEN V et al. A fraction containing kaempferol-3, 4'-dimethylether from Larrea divaricata Cav. induces macrophage activation on mice infected with Candida albicans[J]. Phytother Res, 2014, 28 (6): 917- 924
doi: 10.1002/ptr.5086
[24]   WANG M , SUN J , JIANG Z et al. Hepatoprotective effect of kaempferol against alcoholic liver injury in mice[J]. Am J Chin Med, 2015, 43 (2): 241- 254
doi: 10.1142/S0192415X15500160
[25]   王萌.山柰酚抗酒精性肝损伤及其机制研究[D].陕西: 西北农林科技大学, 2015.
WANG Meng. Mechanism study of kaempferol's protective effects against alcoholic liver injury[D]. Shaanxi: Northwest A&F University, 2015. (in Chinese)
[26]   SUO L, KANG K, WANG X, et al. Carvacrol alleviates ischemia reperfusion injury by regulating the PI3K-Akt pathway in rats[J/OL]. PLoS One, 2014, 9(8): e104043. DOI: 10.1371/journal.pone.0104043.
[27]   SONG E, FU J, XIA X, et al. Bazhen decoction protects against acetaminophen induced acute liver injury by inhibiting oxidative stress, inflammation and apoptosis in mice[J/OL]. PLoS One, 2014, 9(9): e107405. DOI: 10.1371/journal.pone.0107405.
[28]   REYES-GORDILLO K, SHAH R, ARELLANES-ROBLEDO J, et al. Akt1 and Akt2 isoforms play distinct roles in regulating the development of inflammation and fibrosis associated with alcoholic liver disease[J/OL]. Cells, 2019, 8(11): 1337. DOI: 10.3390/cells8111337.
[29]   段朝藜.IL-6在脂多糖/D-半乳糖胺诱导的急性肝损伤中的作用及机制研究[D].厦门: 厦门大学, 2017.
DUAN Chaoli. The role and mechanism of IL-6 in LPS/D-GalN induced acute liver injury[D]. Xiamen: Xiamen University, 2017. (in Chinese)
[30]   刘政芳, 黄伟, 李芹 . 动态检测慢加急(亚急)性肝衰竭病人细胞因子的临床意义[J]. 安徽医药, 2017, 21 (2): 263- 266
LIU Zhengfang , HUANG Wei , LI Qin . Dynamic observation of cytokines in chronic and acute liver failure and clinical significance[J]. Anhui Medical and Pharmaceutical Journal, 2017, 21 (2): 263- 266
doi: 10.3969/j.issn.1009-6469.2017.02.018
[31]   ANITHA S , RAGHUNADHARAO D , WALIYAR F et al. The association between exposure to aflatoxin, mutation in TP53, infection with hepatitis B virus, and occurrence of liver disease in a selected population in Hyderabad, India[J]. Mutat Res Genet Toxicol Environ Mutagen, 2014, 766:23- 28
doi: 10.1016/j.mrgentox.2013.12.011
[32]   邓进巍, 刘燕, 郭辛翔, 等.姜黄素下调PI3K/AKT/mTOR通路抑制人肝癌细胞系增殖[J].基础医学与临床, 2016, 36(9):1274-1279. DOI:CNKI:SUN:JCYL.0.2016-09-020.
DENG Jinwei, LIU Yan, GUO Xinxiang, et al. Curcumin inhibits proliferation of human hepatoma cell line via down-regulation of PI3K/AKT/mTOR signaling pathway[J]. Basic & Clinical Medicine, 2016, 36(9):1274-1279. DOI:CNKI:SUN:JCYL.0.2016-09-020.(in Chinese)
[33]   谷雪, 付文娟, 孙芳初 et al. PI3K/Akt信号通路与放射性肝损伤的关系研究[J]. 解放军预防医学杂志, 2018, 36 (12): 1581- 1584
GU Xue , FU Wenjuan , SUN Fangchu et al. Relationships between PI3K/Akt signaling pathway and radiation-induced liver injury[J]. Journal of Preventive Medicine of Chinese People's Liberation Army, 2018, 36 (12): 1581- 1584
[34]   黄成, 李俊, 马陶陶 . PI3K/Akt信号通路与肝纤维化[J]. 中国药理学通报, 2011, 27 (8): 1037- 1041
HUANG Cheng , LI Jun , MA Taotao . PI3K/Akt signaling pathway and liver fibrosis[J]. Chinese Pharmacological Bulletin, 2011, 27 (8): 1037- 1041
doi: 10.3969/j.issn.1001-1978.2011.08.001
[35]   LOPETUSO L R , MOCCI G , MARZO M et al. Harmful effects and potential benefits of anti-tumor necrosis factor (TNF)-α on the liver[J]. Int J Mol Sci, 2018, 19 (8): 2199
doi: 10.3390/ijms19082199
[1] LIU Xin, WU Haiqin. Progress on neuroprotective effects of erythropoietin[J]. J Zhejiang Univ (Med Sci), 2013, 42(6): 693-699.
[2] WU Yi-Fei, SUN Ai-Hua, ZHAO Jin-Fang, GE Yu-Mei, YAN Jie. Distribution of drug inactive enzyme genes in bacterial isolates and mechanism of its induction and inhibition[J]. J Zhejiang Univ (Med Sci), 2013, 42(2): 131-140.
[3] . Mechanism of NMDA receptor-dependent neuronal survival and neuroprotection[J]. J Zhejiang Univ (Med Sci), 2011, 40(4): 440-445.