Please wait a minute...
J Zhejiang Univ (Med Sci)  2020, Vol. 49 Issue (6): 665-678    DOI: 10.3785/j.issn.1008-9292.2020.12.01
    
Mechanism and intervention of mucosal immune regulation based on "lung and large intestine being interior-exteriorly related" theory of traditional Chinese medicine
LOU Zhaohuan(),ZHAO Huajun,LYU Guiyuan*()
College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
Download: HTML( 50 )   PDF(1138KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The "lung and large intestine being interior-exteriorly related" is one of the classical theories in traditional Chinese medicine, which indicates a close correlation between the lung and large intestine in physiology and pathology, and plays a pivotal role in guiding the treatment of the lung and bowel diseases. Modern medicine has revealed some connections between the lung and large intestine in tissue origin and mucosal immunity, and preliminarily illuminated the material basis and possible regulatory mechanism of the theory. Recently, this theory has been applied to guide the treatment of refractory lung and intestine diseases such as COVID-19 and ulcerative colitis and has obtained reliable efficacy. Existing research results show that the anatomical homogeneity of lung and large intestine promotes the correlation between lung-bowel mucosal immunity, and mucosal immunity and migration and homing of innate lymphocytes are one of the physiological and pathological mechanisms for lung and large intestine to share. Under the guidance of this theory, Chinese medicines with heat-clearing and detoxifying or tonic effects are commonly used in the treatment of the lung and intestinal diseases by regulating lung-bowel mucosal immunity and they can be candidate drugs to treat lung/intestinal diseases simultaneously. However, the existing studies on immune regulation are mainly focused on the expression levels of sIgA and cytokines, as well as the changes in the number of immune cells such as innate lymphocytes and B lymphocytes. While the following aspects need further investigation: the airway/intestinal mucous hypersecretion, the functional changes of pulmonary and intestinal mucosal barrier immune cells, the dynamic process of lung/intestinal mucosal immune interaction, the intervention effect of local pulmonary/intestinal microecology, the correlation and biological basis between the heat-clearing and detoxifying effect and the tonic effect, and its regulation of pulmonary/intestinal mucosal immunity. In this paper, we try to analyze the internal relationship between lung and intestine related diseases from the point of view of the common mucosal immune system of lung and intestine, and summarize the characteristics and rules of traditional Chinese medicine compound and its active ingredients, which have regulatory effect on lung and intestine mucosal immune system, so as to further explain the theoretical connotation of "lung and large intestine being interior-exteriorly related" and provide reference for the research and development of drugs for related diseases.



Key wordsLung-gut axis      Immunity, mucosal      Innate lymphocytes      Lymphocyte homing      Traditional Chinese medicine treatment     
Received: 07 August 2020      Published: 14 January 2021
CLC:  R285.5  
Corresponding Authors: LYU Guiyuan     E-mail: zhaohuanlou@zcmu.edu.cn;lv.gy@263.net
Cite this article:

LOU Zhaohuan,ZHAO Huajun,LYU Guiyuan. Mechanism and intervention of mucosal immune regulation based on "lung and large intestine being interior-exteriorly related" theory of traditional Chinese medicine. J Zhejiang Univ (Med Sci), 2020, 49(6): 665-678.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2020.12.01     OR     http://www.zjujournals.com/med/Y2020/V49/I6/665


“肺与大肠相表里”的黏膜免疫调节机制及中药干预作用研究进展

“肺与大肠相表里”是中医学经典理论之一,揭示了肺与大肠在生理、病理上的密切相关性,在肺、肠疾病治疗上具有重要指导意义。现代医学已揭示肺与大肠在组织来源、黏膜免疫上的联系,初步明确了“肺与大肠相表里”的物质基础及可能的调节机制,并将此理论应用于2019冠状病毒病、溃疡性结肠炎等肺肠难治病的治疗,获得可靠疗效。现有研究结果表明,肺与大肠解剖上的同质性促使了肺-肠黏膜免疫功能的相关性,黏膜免疫及固有淋巴细胞的迁移归巢是肺与大肠共享生理病理的调节机制之一。部分清热解毒类中药和补益类中药通过调节肺-肠黏膜免疫功能治疗肺、肠疾病,成为“肺肠同治”创新药物研发的候选药物。然而,上述两类中药现有免疫调节相关研究主要集中于对分泌型IgA、细胞因子等表达水平及固有淋巴细胞、B淋巴细胞等免疫细胞数量的变化上,对与之相关的气道、肠道黏液高分泌、肺及肠道黏膜屏障免疫细胞功能改变、肺-肠黏膜免疫相互作用动态过程及肺-肠局部微生态的干预作用,以及清热解毒、补益功效与其调节肺-肠黏膜免疫作用间的相关性和生物学基础等尚缺乏深入研究。本文试从肺、肠共同拥有的黏膜免疫系统切入,从黏膜固有淋巴细胞归巢角度分析肺肠相关疾病的内在联系,并综述对肺、肠黏膜免疫具有调节作用的中药复方及其有效成分的作用特点和规律,为“肺与大肠相表里”理论内涵的深入阐释及相关疾病治疗药物的研发提供参考。


关键词: 肺-肠轴,  免疫, 黏膜,  固有淋巴细胞,  淋巴细胞归巢,  中医药治疗 
[1]   李磊, 孙广仁, 张庆祥 et al. "气机升降"在"肺合大肠"关系中的生理意义[J]. 山东中医杂志, 2013, 32 (10): 699- 700, 710
LI Lei , SUN Guangren , ZHANG Qinxiang et al. The physiological significance of lift and drop of Qi movement in the lung together the large intestine[J]. Shandong Journal of Tratitional Chinese Medicine, 2013, 32 (10): 699- 700, 710
doi: 10.16295/j.cnki.0257-358x.2013.10.003
[2]   马师雷.基于三部《名医类案》和红外热像技术分析"肺与大肠相表里"理论的证治规律[D].北京: 北京中医药大学, 2013.
MA Shilei. Syndrome and therapeutic principles analysis of theory on "the lung and large intestine are exterior-interiorly related" based on three sections of Mingyi Lei'an and infrared thermal imaging technology[D]. Beijing: Beijing University of Chinese Medicine, 2013. (in Chinese)
[3]   YAZAR A , ATIS S , KONCA K et al. Respiratory symptoms and pulmonary functional changes in patients with irritable bowel syndrome[J]. Am J Gastroenterol, 2001, 96 (5): 1511- 1516
doi: 10.1111/j.1572-0241.2001.03748.x
[4]   CEYHAN B B , KARAKURT S , CEVIK H et al. Bronchial hyperreactivity and allergic status in inflammatory bowel disease[J]. Respiration, 2003, 70 (1): 60- 66
doi: 10.1159/000068407
[5]   DOUGLAS J G , MCDONALD C F , LESLIE M J et al. Respiratory impairment in inflammatory bowel disease:does it vary with disease activity?[J]. Respir Med, 1989, 83 (5): 389- 394
doi: 10.1016/s0954-6111(89)80070-8
[6]   郑秀丽, 杨宇, 唐洪屈 et al. 从肺与大肠的特异相关性探讨"肺与大肠相表里"[J]. 中华中医药杂志, 2013, 28 (5): 1492- 1495
ZHENG Xiuli , YANG Yu , TANG Hongqu et al. Discussion of "the interior and exterior relationship between lung and large intestine" from the perspective of specific correlation between lung and large intestine[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2013, 28 (5): 1492- 1495
[7]   CAMELO A , BARLOW J L , DRYNAN L F et al. Blocking IL-25 signalling protects against gut inflammation in a type-2 model of colitis by suppressing nuocyte and NKT derived IL-13[J]. J Gastroenterol, 2012, 47 (11): 1198- 1211
doi: 10.1007/s00535-012-0591-2
[8]   HALIM T Y , STEER C A , MATH? L et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation[J]. Immunity, 2014, 40 (3): 425- 435
doi: 10.1016/j.immuni.2014.01.011
[9]   童晓萍, 何德平, 林琳 . "从肠论治"对急性肺损伤大鼠P物质含量影响[J]. 辽宁中医药大学学报, 2016, 18 (9): 33- 35
TONG Xiaoping , HE Deping , LIN Lin . Influence of "Treatment based on large intestine" on contents of substance P in rats with acute lung injury[J]. Journal of Liaoning University of Traditional Chinese Medicine, 2016, 18 (9): 33- 35
doi: 10.13194/j.issn.1673-842x.2016.09.009
[10]   李继红, 王小莉, 霍吉尔 et al. 大承气汤对支气管哮喘及肺肠合病Treg/TH17免疫机制的作用[J]. 吉首大学学报(自然科学版), 2019, 40 (4): 88- 92
LI Jihong , WANG Xiaoli , HUO Ji'er et al. Effect of Dachengqi decoction on the immunologic mechanism of Treg/TH17in bronchial asthma and lung-intestinal disease[J]. Journal of Jishou University (Natural Sciences Edition), 2019, 40 (4): 88- 92
doi: 10.13438/j.cnki.jdzk.2019.04.017
[11]   孙慧怡, 刘大铭, 张雯 et al. 从肺论治、从肠论治法对溃疡性结肠炎大鼠肺与结肠组织白细胞介素4、分泌型免疫球蛋白A表达的影响[J]. 环球中医药, 2019, 12 (11): 1619- 1624
SUN Huiyi , LIU Daming , ZHANG Wen et al. Effects of lung treatment and intestinal treatment on the expression of IL-4 and s-IgA in lung and colon tissues of ulcerative colitis rats[J]. Global Traditional Chinese Medicine, 2019, 12 (11): 1619- 1624
doi: 10.3969/j.issn.1674-1749.2019.11.001
[12]   蒋海燕, 张士强, 杨蕴 et al. 基于"肺与大肠相表里"研究健脾固肠方通过调节肠道免疫平衡抑制肺癌小鼠肿瘤转移的机制[J]. 上海中医药杂志, 2020, 54 (3): 91- 96
JIANG Haiyan , ZHANG Shiqiang , YANG Yun et al. Mechanisms of Jianpi Guchang recipe in inhibiting metastasis of lung cancer in mice by regulating intestinal immune balance based on the theory of "the lung and the large intestine being interior-exteriorly related"[J]. Shanghai Journal of Traditional Chinese Medicine, 2020, 54 (3): 91- 96
doi: 10.16305/j.1007-1334.2020.03.024
[13]   郭秀芹.大承气汤治疗急性呼吸窘迫综合征的临床探究[D].济南: 山东中医药大学, 2017.
GUO Xiuqin. The clinical exploration of Dachengqi decoction for the patients with acute respiratory distress syndrome[D]. Jinan: Shangdong University of Traditional Chinese Medicine, 2017. (in Chinese)
[14]   卢建珍, 裴静波, 潘建锋 et al. 基于"肺与大肠相表里"理论的宣肺通便方治疗功能性便秘的疗效及对血清SP、NO水平影响研究[J]. 广州中医药大学学报, 2020, 37 (2): 233- 238
LU Jianzhen , PEI Jingbo , PAN Jianfeng et al. Therapeutic effect of Xuanfei Tongbian recipe prescribed on basis of theory of lung and large intestine being interior-exteriorly related for treatment of functional constipation and its influence on serum substance P and nitric oxide levels[J]. Journal of Guangzhou University of Traditional Chinese Medicine, 2020, 37 (2): 233- 238
doi: 10.13359/j.cnki.gzxbtcm.2020.02.007
[15]   田在善, 沈长虹, 李东华 et al. 大承气汤对便秘大鼠肺泡巨噬细胞活力的影响——"肺与大肠相表里"的实验研究[J]. 天津中医, 1992, (4): 19- 22
TIAN Zaishan , SHENG Changhong , LI Donghua et al. Effects of Dachengqi decoction on the activity of alveolar macrophage in rats with constipation-An experimental study on "lung and large intestine being interior-exteriorly related"[J]. Tianjin Journal of Traditional Chinese Medicine, 1992, (4): 19- 22
[16]   王坦, 张前, 李宇航 et al. "通利大肠"对COPD大鼠细胞因子含量的影响[J]. 北京中医药大学学报, 2013, 36 (2): 104- 107
WANG Tan , ZHANG Qian , LI Yuhang et al. Influence of dredging large intestine on content of cytokines in rats with chronic obstructive pulmonary disease[J]. Journal of Beijing University of Traditional Chinese Medicine, 2013, 36 (2): 104- 107
doi: 10.3969/j.issn.1006-2157.2013.02.009
[17]   时晨, 林丽丽, 谢彤 et al. 基于"肺-肠"轴探讨肺、肠微生态对肺部疾病的影响[J]. 南京中医药大学学报, 2020, 36 (2): 168- 173
SHI Chen , LIN Lili , XIE Tong et al. The role of the lung-gut axis and the lung and gut microorganism in pulmonary disease[J]. Journal of Nanjing University of Traditional Chinese Medicine, 2020, 36 (2): 168- 173
doi: 10.14148/j.issn.1672-0482.2020.0168
[18]   刘若阳, 余德海, 党思捷 et al. 从"肺与大肠相表里"论治新型冠状病毒肺炎[J]. 成都中医药大学学报, 2020, 43 (1): 14- 16, 41
LIU Ruoyang , YU Dehai , DANG Sijie et al. Treating corona virus disease 2019 from theory of "lung and large intestine being interior-exteriorly related"[J]. Journal of Chengdu University of Traditional Chinese Medicine, 2020, 43 (1): 14- 16, 41
doi: 10.13593/j.cnki.51-1501/r.2020.01.014
[19]   唐凌, 李少滨, 袁敏 et al. "肺与大肠相表里"理论在重型新型冠状病毒肺炎治疗中的应用探讨[J]. 上海中医药杂志, 2020, 54 (4): 23- 26
TANG Ling , LI Shaobin , YUAN Min et al. Application of the theory of "lung and intestine forming an exterior and interior relationship" to the treatment of severe COVID-19[J]. Shanghai Journal of Traditional Chinese Medicine, 2020, 54 (4): 23- 26
doi: 10.16305/j.1007-1334.2020.04.003
[20]   周敏红, 叶柏.叶柏教授从肺论治溃疡性结肠炎缓解期临床经验浅析[J].四川中医, 2016, 34(2):1-3. DOI:CNKI:SUN:SCZY.0.2016-02-001.
ZHOU Minhong, YEI Bai. Professor Ye Bai's clinical experience in treating remission stage of ulcerative colitis based on lung theory[J]. Journal of Sichuan of Traditional Chinese Medicine, 2016, 34(2):1-3. DOI:CNKI:SUN:SCZY.0.2016-02-001.(in Chinese)
[21]   刘声, 刘晓燕, 李立华 et al. "肺与大肠相表里"的组织细胞学基础研究[J]. 中华中医药杂志, 2012, 27 (4): 1167- 1170
LIU Sheng , LIU Xiaoyan , LI Lihua et al. Histology"lung and large intestine being interior-exteriorly related"[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2012, 27 (4): 1167- 1170
[22]   刘声, 刘晓燕, 郭霞珍 . 从肺肠上皮组织细胞变化分析肺与大肠相表里的内涵[J]. 世界中医药, 2014, 9 (8): 1051- 1054
LIU Sheng , LIU Xiaoyan , GUO Xiazhen . Analysis of the connotation of interior-exteriorly relation of the lung and large intestine from changes of the epithelial cells[J]. World Chinese Medicine, 2014, 9 (8): 1051- 1054
doi: 10.3969/j.issn.1673-7202.2014.08.026
[23]   靳文学, 杨宇 . 从粘膜免疫系统看"肺与大肠相表里"[J]. 四川中医, 2005, 23 (12): 1- 3
QI Wenxue , YANG Yu . Explanation of "interior-exteriorly relation of the lung and large intestine" from the perspective of mucosal immune system[J]. Journal of Sichuan of Traditional Chinese Medicine, 2005, 23 (12): 1- 3
doi: 10.3969/j.issn.1000-3649.2005.12.001
[24]   徐天成, 吴晓亮, 裴丽霞 et al. 肺与大肠相表里的微生态学解释[J]. 中国微生态学杂志, 2018, 30 (1): 100- 103
XU Tiancheng , WU Xiaoliang , PEI Lixia et al. Microecological interpretation of the lung-gut axis[J]. Chinese Journal of Microecology, 2018, 30 (1): 100- 103
doi: 10.13381/j.cnki.cjm.201801025
[25]   GRAY J , OEHRLE K , WORTHEN G et al. Intestinal commensal bacteria mediate lung mucosal immunity and promote resistance of newborn mice to infection[J]. Sci Transl Med, 2017, 9 (376):
doi: 10.1126/scitranslmed.aaf9412
[26]   MUKHERJEE S , HANIDZIAR D . More of the gut in the lung:how two microbiomes meet in ARDS[J]. Yale J Biol Med, 2018, 91 (2): 143- 149
[27]   ZHANG D , LI S , WANG N et al. The cross-talk between gut microbiota and lungs in common lung diseases[J]. Front Microbiol, 2020, 11:301
doi: 10.3389/fmicb.2020.00301
[28]   WANG J , LI F , WEI H et al. Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated Th17 cell-dependent inflammation[J]. J Exp Med, 2014, 211 (12): 2397- 2410
doi: 10.1084/jem.20140625
[29]   RUANE D , BRANE L , REIS B S et al. Lung dendritic cells induce migration of protective T cells to the gastrointestinal tract[J]. J Exp Med, 2013, 210 (9): 1871- 1888
doi: 10.1084/jem.20122762
[30]   SPITS H , ARTIS D , COLONNA M et al. Innate lymphoid cells——a proposal for uniform nomenclature[J]. Nat Rev Immunol, 2013, 13 (2): 145- 149
doi: 10.1038/nri3365
[31]   卢晨雨, 汪洌 . 三型固有淋巴细胞在肠道免疫中的作用[J]. 生命科学研究, 2018, 22 (2): 167- 172
LU Chenyu , WANG Lie . The role of ILC3 in intestinal immunity[J]. Life Science Research, 2018, 22 (2): 167- 172
doi: 10.16605/j.cnki.1007-7847.2018.02.011
[32]   MJ?SBERG J , RAO A . Lung inflammation originating in the gut[J]. Science, 2018, 359 (6371): 36- 37
doi: 10.1126/science.aar4301
[33]   HUANG Y , MAO K , CHEN X et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense[J]. Science, 2018, 359 (6371): 114- 119
doi: 10.1126/science.aam5809
[34]   CELLA M , FUCHS A , VERMI W et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity[J]. Nature, 2009, 457 (7230): 722- 725
doi: 10.1038/nature07537
[35]   SANOS S L , BUI V L , MORTHA A et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells[J]. Nat Immunol, 2009, 10 (1): 83- 91
doi: 10.1038/ni.1684
[36]   BUONOCORE S , AHERN P P , UHLIG H H et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology[J]. Nature, 2010, 464 (7293): 1371- 1375
doi: 10.1038/nature08949
[37]   POWELL N , WALKER A W , STOLARCZYK E et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells[J]. Immunity, 2012, 37 (4): 674- 684
doi: 10.1016/j.immuni.2012.09.008
[38]   KIM C H , HASHIMOTO-HILL S , KIM M . Migration and tissue tropism of innate lymphoid cells[J]. Trends Immunol, 2016, 37 (1): 68- 79
doi: 10.1016/j.it.2015.11.003
[39]   SONNENBERG G F , FOUSER L A , ARTIS D . Border patrol:regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22[J]. Nat Immunol, 2011, 12 (5): 383- 390
doi: 10.1038/ni.2025
[40]   KLOSE C S , KISS E A , SCHWIERZECK V et al. A T-bet gradient controls the fate and function of CCR6-RORgammat+ innate lymphoid cells[J]. Nature, 2013, 494 (7436): 261- 265
doi: 10.1038/nature11813
[41]   DE GROVE K C, PROVOOST S, VERHAMME F M, et al. Characterization and quantification of innate lymphoid cell subsets in human lung[J/OL]. PLoS One, 2016, 11(1): e0145961. DOI: 10.1371/journal.pone.0145961.
[42]   ARDAIN A , PORTERFIELD J Z , KL?VERPRIS H N et al. Type 3 ILCs in lung disease[J]. Front Immunol, 2019, 10:92
doi: 10.3389/fimmu.2019.00092
[43]   XIONG H , KEITH J W , SAMILO D W et al. Innate lymphocyte/Ly6C(hi) monocyte crosstalk promotes klebsiella pneumoniae clearance[J]. Cell, 2016, 165 (3): 679- 689
doi: 10.1016/j.cell.2016.03.017
[44]   GUO X , QIU J , TU T et al. Induction of innate lymphoid cell-derived interleukin-22 by the transcription factor STAT3 mediates protection against intestinal infection[J]. Immunity, 2014, 40 (1): 25- 39
doi: 10.1016/j.immuni.2013.10.021
[45]   MORTHA A , CHUDNOVSKIY A , HASHIMOTO D et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis[J]. Science, 2014, 343 (6178): 1249288
doi: 10.1126/science.1249288
[46]   GURCZYNSKI S J , MOORE B B . IL-17 in the lung:the good, the bad, and the ugly[J]. Am J Physiol Lung Cell Mol Physiol, 2018, 314 (1): L6- L16
doi: 10.1152/ajplung.00344.2017
[47]   TAKAYAMA T , KAMADA N , CHINEN H et al. Imbalance of NKp44(+)NKp46(-) and NKp44(-)NKp46(+) natural killer cells in the intestinal mucosa of patients with Crohn's disease[J]. Gastroenterology, 2010, 139 (3): 882- 892, 892e1-3
doi: 10.1053/j.gastro.2010.05.040
[48]   EKEN A , SINGH A K , TREUTING P M et al. IL-23R+ innate lymphoid cells induce colitis via interleukin-22-dependent mechanism[J]. Mucosal Immunol, 2014, 7 (1): 143- 154
doi: 10.1038/mi.2013.33
[49]   KIM M , GU B , MADISON M C et al. Cigarette smoke induces intestinal inflammation via a Th17 cell-neutrophil axis[J]. Front Immunol, 2019, 10:75
doi: 10.3389/fimmu.2019.00075
[50]   ENAUD R , PREVEL R , CIARLO E et al. The gut-lung axis in health and respiratory diseases:a place for inter-organ and inter-kingdom crosstalks[J]. Front Cell Infect Microbiol, 2020, 10:9
doi: 10.3389/fcimb.2020.00009
[51]   TROMPETTE A , GOLLWITZER E S , YADAVA K et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis[J]. Nat Med, 2014, 20 (2): 159- 166
doi: 10.1038/nm.3444
[52]   BINGULA R , FILAIRE M , RADOSEVIC-ROBIN N et al. Desired turbulence? gut-lung axis, immunity, and lung cancer[J]. J Oncol, 2017, 2017:5035371
doi: 10.1155/2017/5035371
[53]   MCALEER J P , KOLLS J K . Contributions of the intestinal microbiome in lung immunity[J]. Eur J Immunol, 2018, 48 (1): 39- 49
doi: 10.1002/eji.201646721
[54]   ENGLER D B , REUTER S , VAN WIJCK Y et al. Effective treatment of allergic airway inflammation with Helicobacter pylori immunomodulators requires BATF3-dependent dendritic cells and IL-10[J]. Proc Natl Acad Sci U S A, 2014, 111 (32): 11810- 11815
doi: 10.1073/pnas.1410579111
[55]   DICKSON R P , SINGER B H , NEWSTEAD M W et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome[J]. Nat Microbiol, 2016, 1 (10): 16113
doi: 10.1038/nmicrobiol.2016.113
[56]   汤忠泉, 李云涛 . 基于肺与大肠相表里理论采用粪菌移植治疗肺炎继发抗生素相关性腹泻[J]. 中国中西医结合消化杂志, 2020, 28 (4): 268- 271
TANG Zhongquan , LI Yuntao . Treatment of antibiotic associated diarrhea secondary to pneumonia by fecal bacteria transplantation based on the theory of "interior-exterior relationship of lung and large intestine"[J]. Chinese Journal of Integrated Traditional and Western Medicine on Digestion, 2020, 28 (4): 268- 271
doi: 10.3969/j.issn.1671-038X.2020.04.06
[57]   KIM M H , TAPAROWSKY E J , KIM C H . Retinoic acid differentially regulates the migration of innate lymphoid cell subsets to the gut[J]. Immunity, 2015, 43 (1): 107- 119
doi: 10.1016/j.immuni.2015.06.009
[58]   SATOH-TAKAYAMA N , SERAFINI N , VERRIER T et al. The chemokine receptor CXCR6 controls the functional topography of interleukin-22 producing intestinal innate lymphoid cells[J]. Immunity, 2014, 41 (5): 776- 788
doi: 10.1016/j.immuni.2014.10.007
[59]   PEARSON C, THORNTON E E, MCKENZIE B, et al. ILC3 GM-CSF production and mobilisation orchestrate acute intestinal inflammation[J/OL]. Elife, 2016, 5: e10066. DOI: 10.7554/eLife.10066.
[60]   AGACE W W , ROBERTS A I , WU L et al. Human intestinal lamina propria and intraepithelial lymphocytes express receptors specific for chemokines induced by inflammation[J]. Eur J Immunol, 2000, 30 (3): 819- 826
doi: 10.1002/1521-4141(200003)30:3<819::aid-immu819>3.0.co;2-y
[61]   YUAN Y H , TEN HOVE T , THE F O et al. Chemokine receptor CXCR3 expression in inflammatory bowel disease[J]. Inflamm Bowel Dis, 2001, 7 (4): 281- 286
doi: 10.1097/00054725-200111000-00001
[62]   SALLUSTO F , LENIG D , F?RSTER R et al. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions[J]. Nature, 1999, 401 (6754): 708- 712
doi: 10.1038/44385
[63]   TWEEDLE J L , DEEPE GS J R . Tumor necrosis factor alpha antagonism reveals a gut/lung axis that amplifies regulatory T cells in a pulmonary fungal infection[J]. Infect Immun, 2018, 86 (6):
doi: 10.1128/IAI.00109-18
[64]   MAGNUSSON M K , BRYNJóLFSSON S F , DIGE A et al. Macrophage and dendritic cell subsets in IBD:ALDH+ cells are reduced in colon tissue of patients with ulcerative colitis regardless of inflammation[J]. Mucosal Immunol, 2016, 9 (1): 171- 182
doi: 10.1038/mi.2015.48
[65]   DIGE A , MAGNUSSON M K , OHMAN L et al. Reduced numbers of mucosal DR(int) macrophages and increased numbers of CD103(+) dendritic cells during anti-TNF-alpha treatment in patients with Crohn's disease[J]. Scand J Gastroenterol, 2016, 51 (6): 692- 699
doi: 10.3109/00365521.2015.1134649
[66]   王新月, 孙慧怡 . 基于肺与大肠相表里理论探讨从肺论治溃疡性结肠炎[J]. 北京中医药大学学报, 2011, 34 (3): 153- 155
WANG Xinyue , SUN Huiyi . Treatment of ulcerative colitis from lung based on theory of lung and large intestine being interior-exteriorly related[J]. Journal of Beijing University of Traditional Chinese Medicine, 2011, 34 (3): 153- 155
[67]   马永利 . 自拟通腑解毒汤对小儿重症肺炎治疗作用的探讨[J]. 中国中医药科技, 2019, 26 (5): 750- 751
MA Yongli . Study on the therapeutic effect of Tongfu Jiedu Decoction on severe pneumonia in children[J]. Chinese Journal of Traditional Medical Science and Technology, 2019, 26 (5): 750- 751
[68]   成向进, 林朝亮, 朱红林 et al. 应用泻肺通腑法治疗老年重症肺炎患者的临床研究[J]. 中国中医急症, 2018, 27 (10): 1758- 1760
CHENG Xiangjin , LIN Chaoliang , ZHU Honglin et al. Clinical research of Xiefei Tongfu decoction on patients with severe acute pneumonia[J]. Journal of Emergency in Traditional Chinese Medicine, 2018, 27 (10): 1758- 1760
doi: 10.3969/j.issn.1004-745X.2018.10.018
[69]   郝红梅, 薛西林 . 薛西林运用"肺与大肠相表里"临证验案3则[J]. 江西中医药, 2018, 49 (6): 28- 29
HAO Hongmei , XUE Xilin . Three empirical cases of "appearance of lung and large intestine" applied by Xue Xilin[J]. Jiangxi Journal of Traditional Chinese Medicine, 2018, 49 (6): 28- 29
[70]   刘妙, 郑丰杰, 高誉珊 et al. "从肠论治"对哮喘小鼠BALF炎症细胞及血清IgE含量的影响[J]. 世界中医药, 2015, 10 (1): 26- 29
LIU Miao , ZHENG Fengjie , GAO Yushan et al. Effect of relaxing the large intestine on BLLF inflammatory cell and serum IgE in asthma mices[J]. World Chinese Medicine, 2015, 10 (1): 26- 29
doi: 10.3969/j.issn.1673-7202.2015.01.006
[71]   DING Z , ZHONG R , YANG Y et al. Systems pharmacology reveals the mechanism of activity of Ge-Gen-Qin-Lian decoction against LPS-induced acute lung injury:a novel strategy for exploring active components and effective mechanism of TCM formulae[J]. Pharmacol Res, 2020, 156:104759
doi: 10.1016/j.phrs.2020.104759
[72]   ZHU H , LU X , LING L et al. Houttuynia cordata polysaccharides ameliorate pneumonia severity and intestinal injury in mice with influenza virus infection[J]. J Ethnopharmacol, 2018, 218:90- 99
doi: 10.1016/j.jep.2018.02.016
[73]   黄子慧, 任丹丹, 曹程鸣 et al. 加味四君子汤对仔猪血清免疫因子水平及肠黏膜免疫的影响[J]. 西北农林科技大学学报(自然科学版), 2017, 45 (3): 75- 81
HUANG Zihui , REN Dandan , CAO Chengming et al. Effect of supplementary Sijunzi decoction on levels of serum immune factors and intestinal mucosa immunity of piglets[J]. Journal of Northwest A & F University (Natural Science Edition), 2017, 45 (3): 75- 81
doi: 10.13207/j.cnki.jnwafu.2017.03.011
[74]   金光明, 施恩, 青洁 et al. 中药四黄提取物对肉仔鸡小肠黏膜免疫效果的观察[J]. 中国畜牧兽医, 2011, 38 (1): 65- 68
JIN Guangming , SHI En , QING Jie et al. The observation of effect in Chinese herbs Sihuang extract on broile small intestines mucosal immune[J]. China Animal Husbandry & Veterinary Medicine, 2011, 38 (1): 65- 68
[75]   单春兰.黄芪多糖对雏鸡小肠黏膜免疫机能影响的研究[D].长春: 吉林农业大学, 2016.
SHAN Chunlan. The study of astragalus polysaccharide on the small intestinal mucosal immunity of chichen[D]. Changchun: Jilin Agricultural University, 2016. (in Chinese)
[76]   黄鹏.板蓝根多糖对缺乳仔鼠肠道黏膜免疫功能的影响[D].郑州: 河南农业大学, 2012.
HUANG Peng. The mucosal immune function of RIP on the lacking milk renewal rats[D]. Zhengzhou: Henan Agricultural University, 2012. (in Chinese)
[77]   石玉祥, 闫金坤, 王雪敏 . 枸杞多糖对小鼠肠道上皮内淋巴细胞和杯状细胞数量、分布及对IL-2水平影响[J]. 食品科学, 2011, 32 (13): 318- 320
SHI Yuxiang , YAN Jinkun , WANG Xuemin . Effect of Chinese wolfberry (Lycium barbarum) polysaccharides on number and distribution of intraepithelial lymphocytes and goblet cells and IL-2 expression in mice[J]. Food Science, 2011, 32 (13): 318- 320
[78]   蒋焱平, 陈刚, 郭彦 et al. 玉屏风多糖对小鼠肠黏膜免疫功能影响的复方效应[J]. 中国兽医学报, 2018, 38 (9): 1794- 1797
JIANG Yanping , CHEN Gang , GUO Yan et al. Compound effects of Yupingfeng polysaccharides on mice intestinal mucosal immune function[J]. Chinese Journal of Veterinary Science, 2018, 38 (9): 1794- 1797
doi: 10.16303/j.cnki.1005-4545.2018.09.30
[79]   张皖东, 吕诚, 刘振丽 et al. 人参多糖和猪苓多糖对大鼠肠道黏膜淋巴细胞功能的影响[J]. 中草药, 2007, 38 (2): 221- 224
ZHANG Wandong , LYU Cheng , LIU Zhenli et al. Effect of ginseng polysaccharide and polyporus umbellatus polysaccharide on function of lymphocytes in enteric mucosa of rats[J]. Chinese Traditional and Herbal Drugs, 2007, 38 (2): 221- 224
doi: 10.3321/j.issn:0253-2670.2007.02.026
[80]   张磊.玉屏风散免疫作用机制的研究[D].成都: 成都中医药大学, 2006.
ZHANG Lei. Study on the immune mechanism of Yuping Fengsan[D]. Chengdu: Chengdu University of Traditional Chinese Medicine, 2006. (in Chinese)
[81]   邓桦, 杨鸿, 蒋焱平 et al. 玉屏风多糖影响小鼠淋巴细胞归巢的组织学效应[J]. 中国兽医学报, 2019, 39 (6): 1170- 1174
DENG Hua , YANG Hong , JIANG Yanping et al. Histological effects of Yupingfeng polysaccharide on lymphocyte homing in mice[J]. Chinese Journal of Veterinary Science, 2019, 39 (6): 1170- 1174
doi: 10.16303/j.cnki.1005-4545.2019.06.22
[82]   吴瑕, 杨薇, 张磊 et al. 不同分子量段黄芪多糖对整体及黏膜免疫功能的影响[J]. 中国实验方剂学杂志, 2011, 17 (18): 169- 172
WU Xia , YANG Wei , ZHANG Lei et al. Effect of astragalus polysaccharide segments with different molecular weight on systematic/mucosal immunization in immunodepressive mice[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2011, 17 (18): 169- 172
doi: 10.13422/j.cnki.syfjx.2011.18.015.issn:1005-9903
[83]   严胜泽.太子参多糖对环磷酰胺所致免疫损伤小鼠的保护作用研究[D].福州: 福建农林大学, 2015.
YAN Shengze. The protective effects of immune injury in mice induced by cyclophosphamide heterophylla polysaccharide[D]. Fuzhou: Fujian Agriculture and Forestry University, 2015. (in Chinese)
[84]   廖吕燕."芪苓"制剂多糖对免疫抑制小鼠肠道黏膜免疫及免疫调节作用的影响[D].福州: 福建农林大学, 2010.
LIAO Lyuyan. Effect of "QiLing" medicament polysaccharide on intestinal mucosal immunity and immune regulation in inmmunosuppressed mice[D]. Fuzhou: Fujian Agriculture and Forestry University, 2010. (in Chinese)
[85]   张琳, 何德根, 陈慧 . 自拟中药退热方对2018年中山地区甲型流行性感冒患儿呼吸道黏膜免疫功能的影响[J]. 中国中西医结合儿科学, 2019, 11 (3): 257- 259
ZHANG Lin , HE Degen , CHEN Hui . Effect of self-prescribed Tuirefang on respiratory mucosal immunity of children infected with influenza A in Zhongshan in 2018[J]. Chinese Pediatrics of Integrated Traditional and Western Medicine, 2019, 11 (3): 257- 259
doi: 10.3969/j.issn.1674-3865.2019.03.022
[86]   孙正芸, 刘海燕 . 国内外指南推荐的儿童流感治疗方案[J]. 中华实用儿科临床杂志, 2017, 32 (18): 1361- 1365
SUN Zhengyun , LIU Haiyan . Domestic and international guidelines recommend treatment regimens for influenza in children[J]. Chinese Journal of Applied Clinical Pediatrics, 2017, 32 (18): 1361- 1365
doi: 10.3760/cma.j.issn.2095-428X.2017.18.001
[87]   雷娜, 李艳, 何芳雁 et al. 解表方通过调节黏膜免疫保护上呼吸道感染模型小鼠的研究[J]. 中国实验方剂学杂志, 2013, 19 (18): 174- 177
LEI Na , LI Yan , HE Fangyan et al. Study on the protection of upper respiratory tract infection model mice by regulating mucosal immunity with Jiebiao formulation[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2013, 19 (18): 174- 177
doi: 10.11653/syfj2013180174
[88]   刘铁钢, 于河, 张望 et al. 银莱汤对食积复合流感病毒感染小鼠肠黏膜sIgA、TNF-α、IL-10的作用[J]. 北京中医药大学学报, 2014, 37 (2): 86- 89
LIU Tiegang , YU He , ZHANG Wang et al. Influences of Yinlai Tang on sIgA, TNF-α and IL-10in intestinal mucosal tissues of mice with dyspepsia combined with influenza virus infection[J]. Journal of Beijing University of Traditional Chinese Medicine, 2014, 37 (2): 86- 89
doi: 10.3969/j.issn.1006-2157.2014.02.004
[89]   马莉, 黄妍, 侯衍豹 et al. 疏风解毒胶囊免疫调节作用机制研究[J]. 药物评价研究, 2019, 42 (9): 1763- 1768
MA Li , HUANG Yan , HOU Yanbao et al. Study on mechanism for immunoregulation of Shufeng Jiedu capsule[J]. Drug Evaluation Research, 2019, 42 (9): 1763- 1768
doi: 10.7501/j.issn.1674-6376.2019.09.009
[90]   BAO S , ZOU Y , WANG B et al. Ginsenoside Rg1 improves lipopolysaccharide-induced acute lung injury by inhibiting inflammatory responses and modulating infiltration of M2 macrophages[J]. Int Immunopharmacol, 2015, 28 (1): 429- 434
doi: 10.1016/j.intimp.2015.06.022
[91]   孙必强, 伍参荣, 周英 et al. 不同剂型七味白术散对肠道菌群失调小鼠小肠黏膜超微结构和sIgA的影响[J]. 中国微生态学杂志, 2016, 28 (2): 125- 128, 137
SUN Biqiang , WU Canrong , ZHOU Ying et al. Effects of different formulations of Qiwei Baizhu Powder on the ultrasutructure of small intestinal mucosa and sIgA in mice with intestinal dysbacteriosis[J]. Chinese Journal of Microecology, 2016, 28 (2): 125- 128, 137
doi: 10.13381/j.cnki.cjm.201602001
[92]   刘瑶.藿香正气液对感染后肠易激综合征大鼠肠黏膜屏障保护与调节作用的研究[D].广州: 南方医科大学, 2014.
LIU Yao. Protective and regulative effect of Huoxiang Zhengqi liquid on intestinal mucosal barrier of rats with PI-IBS[D]. Guangzhou: Southern Medical University, 2014. (in Chinese)
[93]   何颖辉, 罗晓健, 钱星文 et al. 藿香正气胶囊对菌群失调小鼠黏膜免疫的影响[J]. 中国中药杂志, 2007, 32 (22): 2397- 2400
HE Yinhui , LUO Xiaojian , QIAN Xingwen et al. Effects of Huoxiang Zhengqi liquid on enteric mucosal immune responses in mice with Bacillus dysenteriae and Salmonella typhimurium induced diarrhea[J]. China Journal of Chinese Materia Medica, 2007, 32 (22): 2397- 2400
doi: 10.3321/j.issn:1001-5302.2007.22.017
[94]   刘冲, 段美丽, 李昂 et al. 内毒素血症大鼠肠黏膜免疫细胞的变化及通腑颗粒的干预作用[J]. 胃肠病学和肝病学杂志, 2011, 20 (2): 171- 174
LIU Chong , DUAN Meili , LI Ang et al. Changes of intestinal immune cells and effects of Tongfu granules in rats with endotoxemia[J]. Chinese Journal of Gastroenterology and Hepatology, 2011, 20 (2): 171- 174
doi: 10.3969/j.issn.1006-5709.2011.02.024
[95]   唐秀莹, 陈正礼, 罗启慧 et al. 大豆异黄酮对大鼠肠道上皮内淋巴细胞、杯状细胞及瘦素长型受体的影响[J]. 浙江大学学报(农业与生命科学版), 2013, 39 (3): 343- 350
TANG Xiuying , CHEN Zhengli , LUO Qihui et al. Effects of soybean isoflavones on intestinal epithelial lymphocytes goblet cells and leptin long type receptors in rats[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39 (3): 343- 350
doi: 10.3785/j.issn.1008-9209.2012.09.301
[96]   HUANG G , KHAN I , LI X et al. Ginsenosides Rb3 and Rd reduce polyps formation while reinstate the dysbiotic gut microbiota and the intestinal microenvironment in Apc(Min/+) mice[J]. Sci Rep, 2017, 7 (1): 12552
doi: 10.1038/s41598-017-12644-5
[97]   刘海荣.大黄多糖与巴豆霜干预UC大鼠淋巴细胞归巢作用机制[D].天津: 天津医科大学, 2017.
LIU Hairong. Effects of Rhubarb polysaccharide and defatted croton seed powder on intestinal lymphocyte homing in rats with TNBS-induced colitis[D]. Tianjin: Tianjin Medical University, 2017. (in Chinese)
[98]   GONG J , HU M , HUANG Z et al. Berberine attenuates intestinal mucosal barrier dysfunction in type 2 diabetic rats[J]. Front Pharmacol, 2017, 8:42
doi: 10.3389/fphar.2017.00042
[99]   CONG Y , WANG L , KONRAD A et al. Curcumin induces the tolerogenic dendritic cell that promotes differentiation of intestine-protective regulatory T cells[J]. Eur J Immunol, 2009, 39 (11): 3134- 3146
doi: 10.1002/eji.200939052
[100]   WANG J , GHOSH S S , GHOSH S . Curcumin improves intestinal barrier function:modulation of intracellular signaling, and organization of tight junctions[J]. Am J Physiol Cell Physiol, 2017, 312 (4): C438- C445
doi: 10.1152/ajpcell.00235.2016
[101]   SHEN J , CHEN J J , ZHANG B M et al. Baicalin is curative against rotavirus damp heat diarrhea by tuning colonic mucosal barrier and lung immune function[J]. Dig Dis Sci, 2020, 65 (8): 2234- 2245
doi: 10.1007/s10620-019-05977-w
[102]   邓海燕, 贾立群, 潘琳 et al. 生姜泻心汤对伊立替康化疗后大鼠肠黏膜免疫屏障的影响[J]. 中国免疫学杂志, 2007, 23 (7): 620- 622
DENG Haiyan , JIA Liqun , PAN Lin et al. Effect of Shengjiangxiexintang on the intestinal mucosal immune barrier of rats receiving Irinotecan[J]. Chinese Journal of Immunology, 2007, 23 (7): 620- 622
doi: 10.3321/j.issn:1000-484X.2007.07.012
[103]   于庆生, 袁以洋, 刘举达 et al. 芪黄煎剂对大鼠胃切除后肠黏膜免疫屏障的影响[J]. 中国中西医结合杂志, 2016, 36 (11): 1358- 1363
YU Qingsheng , YUAN Yiyang , LIU Juda et al. Effect of Qihuang decoction on the intestinal mucosal immunologic barrier of rats after gastric resection[J]. Chinese Journal of Integrated Traditional and Western Medicine, 2016, 36 (11): 1358- 1363
doi: 10.7661/CJIM.2016.11.1358
[104]   周富海, 于庆生, 张琦 et al. 芪黄煎剂对大鼠胃切除后肠淋巴细胞归巢受体α4β7、L-selectin及LFA-1的影响[J]. 中医药导报, 2016, 22 (2): 12- 15
ZHOU Fuhai , YU Qinsheng , ZHANG Qi et al. Effects of Qihuang decoction on lymphocyte homing receptors of α4β7, L-selectin and LFA-1 after gastric operation in rats[J]. Guiding Journal of Traditional Chinese Medicine and Pharmacy, 2016, 22 (2): 12- 15
doi: 10.13862/j.cnki.cn43-1446/r.2016.02.004
[105]   张琦, 于庆生, 张作军 et al. 芪黄煎剂对大鼠胃切除术后免疫相关性肠淋巴细胞归巢数量的影响[J]. 中医药临床杂志, 2016, 28 (3): 415- 419
ZHANG Qi , YU Qinsheng , ZHANG Zuojun et al. Effects of Qihuang decoction on the number of immune correlation intestinal lymphocyte homing lympyocytes homing process of gut mucosa after gastrectomy in rats[J]. Clinical Journal of Traditional Chinese Medicine, 2016, 28 (3): 415- 419
doi: 10.16448/j.cjtcm.2016.0154
[106]   曾兆麟, 李玉梅 . 从中医肺与大肠相表里理论探索难治性非典型性肺炎(SARS)治疗的新思路[J]. 上海中医药杂志, 2003, (5): 5
ZENG Zaolin , LI Yumei . On the treatment of SARS upon Chinese medical theory that lungs pair with large intestine[J]. Shanghai Journal of Traditional Chinese Medicine, 2003, (5): 5
doi: 10.16305/j.1007-1334.2003.05.002
[107]   LUO E , ZHANG D , LUO H et al. Treatment efficacy analysis of traditional Chinese medicine for novel coronavirus pneumonia (COVID-19):an empirical study from Wuhan, Hubei Province, China[J]. Chin Med, 2020, 15:34
doi: 10.1186/s13020-020-00317-x
[108]   郑璐.ICU内外的中西医合作: 专家谈中医药在抗击新冠肺炎中的重要作用[N].新华每日电讯, 2020-03-17(6).
ZHENG Lu. Cooperation of Chinese and Western medicine in ICU: the important role of Chinese medicine in fighting against novel coronavirus pneumonia[N]. Xinhua Daily Telegraph, 2020-03-17(6).
[1] FAN Tiantian,CHEN Yongcan,BAI Yu,MA Fengqi,WANG Hengcang,YANG Yiping,CHEN Jinxu,LIN Yuqi. Analysis of medication characteristics of traditional Chinese medicine in treating COVID-19 based on data mining[J]. J Zhejiang Univ (Med Sci), 2020, 49(2): 260-269.