Please wait a minute...
J Zhejiang Univ (Med Sci)  2020, Vol. 49 Issue (4): 524-530    DOI: 10.3785/j.issn.1008-9292.2020.08.12
    
Mechanisms underlying remyelination with special focus on demyelination models of multiple sclerosis
ZHENG Shuangshuang1(),ZHAO Jingwei1,2,3,*()
1. Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, Zhejiang University School of Medicine, Hangzhou 310058, China
2. Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
3. Cryo-EM Center of Zhejiang University, Hangzhou 310058, China
Download: HTML( 6 )   PDF(1071KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Failure to remyelinate and rewrap the demyelinated axons has been revealed as the major hurdle for treatment of multiple sclerosis (MS), and the bottleneck is the inability of oligodendrocyte progenitor cell (OPC) to differentiate into mature oligodendrocyte. Remyelination is a spontaneous regenerative process, which includes activation, migration and differentiation of OPC, and is believed to protect the axon and further halt neurodegeneration. In recent years, studies have identified many potential drug targets for efficiently promoting OPC differentiation in in vivo demyelination models, such as metformin, clemostine, and drug targets as myelin transcription factor 1-like protein (Myt1L), N-methyl-D-aspartic acid (NMDA) receptor, connexin 43 (Cx43), G protein coupled receptor 17 (GPR17), κ opioid receptor (KOR), sterol 14α-demethylase (CYP51), Δ14-sterol reductase (TM7SF2), emopamil-binding protein (EBP). This review summarizes the recent progress on the mechanisms underlying the activation, migration and differentiation of OPC in remyelination with special focus on studies using demyelination models of MS, which may provide insights of further exploring new therapeutic strategies for MS.



Key wordsRemyelination      Multiple sclerosis      Oligodendrocyte progenitor cells     
Received: 20 April 2020      Published: 27 September 2020
CLC:  Q189  
Corresponding Authors: ZHAO Jingwei     E-mail: 21718538@zju.edu.cn;jingweizhao@zju.edu.cn
Cite this article:

ZHENG Shuangshuang,ZHAO Jingwei. Mechanisms underlying remyelination with special focus on demyelination models of multiple sclerosis. J Zhejiang Univ (Med Sci), 2020, 49(4): 524-530.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2020.08.12     OR     http://www.zjujournals.com/med/Y2020/V49/I4/524


复髓鞘机制及其在多发性硬化症脱髓鞘模型中的研究进展

在多发性硬化症患者的中枢神经系统中,脱髓鞘的轴突难以有效复髓鞘是治疗疾病的主要障碍,而髓鞘再生失败的瓶颈问题是少突胶质细胞前体细胞(OPC)不能分化为成熟的少突胶质细胞。复髓鞘是继脱髓鞘后自然发生的再生反应,包括OPC的激活、迁移和分化;具有保护神经轴突、进而避免神经元变性坏死的作用。近年来在体脱髓鞘模型研究发现,二甲双胍、氯马斯汀能有效加强复髓鞘,鉴定了髓鞘转录因子1样蛋白(Myt1L)、N-甲基-D-天门冬氨酸(NMDA)受体、星形细胞连接蛋白43(Cx43)、G蛋白偶联受体17(GPR17)、κ阿片受体(KOR)、甾醇14α-脱甲基化酶(CYP51)、脱氢胆固醇还原酶14(TM7SF2)和3-β-羟基类固醇-8,7-异构酶(EBP)等促进OPC分化的潜在药物靶点。本文基于对复髓鞘机制的理解,讨论了促进OPC分化和增强复髓鞘的研究进展,这些进展为进一步研发治疗多发性硬化症的新方法提供了思路。


关键词: 髓鞘再生,  多发性硬化症,  少突胶质细胞前体细胞 
[1]   NAVE K A , WERNER H B . Myelination of the nervous system:mechanisms and functions[J]. Annu Rev Cell Dev Biol, 2014, 30 503- 533
doi: 10.1146/annurev-cellbio-100913-013101
[2]   NAVE K A . Myelination and the trophic support of long axons[J]. Nat Rev Neurosci, 2010, 11 (4): 275- 283
doi: 10.1038/nrn2797
[3]   DUNCAN I D , BROWER A , KONDO Y et al. Extensive remyelination of the CNS leads to functional recovery[J]. Proc Natl Acad Sci U S A, 2009, 106 (16): 6832- 6836
doi: 10.1073/pnas.0812500106
[4]   FRANKLIN R , FFRENCH-CONSTANT C . Regenerating CNS myelin-from mechanisms to experimental medicines[J]. Nat Rev Neurosci, 2017, 18 (12): 753- 769
doi: 10.1038/nrn.2017.136
[5]   FVNFSCHILLING U , SUPPLIE L M , MAHAD D et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity[J]. Nature, 2012, 485 (7399): 517- 521
doi: 10.1038/nature11007
[6]   HUGHES E G , KANG S H , FUKAYA M et al. Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain[J]. Nat Neurosci, 2013, 16 (6): 668- 676
doi: 10.1038/nn.3390
[7]   MOYON S , DUBESSY A L , AIGROT M S et al. Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration[J]. J Neurosci, 2015, 35 (1): 4- 20
doi: 10.1523/JNEUROSCI.0849-14.2015
[8]   ZAWADZKA M , RIVERS L E , FANCY S P et al. CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination[J]. Cell Stem Cell, 2010, 6 (6): 578- 590
doi: 10.1016/j.stem.2010.04.002
[9]   SHEN S , SANDOVAL J , SWISS V A et al. Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency[J]. Nat Neurosci, 2008, 11 (9): 1024- 1034
doi: 10.1038/nn.2172
[10]   YE F , CHEN Y , HOANG T et al. HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction[J]. Nat Neurosci, 2009, 12 (7): 829- 838
doi: 10.1038/nn.2333
[11]   ZHAO C , MA D , ZAWADZKA M et al. Sox2 sustains recruitment of oligodendrocyte progenitor cells following CNS demyelination and primes them for differentiation during remyelination[J]. J Neurosci, 2015, 35 (33): 11482- 11499
doi: 10.1523/JNEUROSCI.3655-14.2015
[12]   TSAI H H , NIU J , MUNJI R et al. Oligodendrocyte precursors migrate along vasculature in the developing nervous system[J]. Science, 2016, 351 (6271): 379- 384
doi: 10.1126/science.aad3839
[13]   CASACCIA-BONNEFIL P , TIKOO R , KIYOKAWA H et al. Oligodendrocyte precursor differentiation is perturbed in the absence of the cyclin-dependent kinase inhibitor p27Kip1[J]. Genes Dev, 1997, 11 (18): 2335- 2346
doi: 10.1101/gad.11.18.2335
[14]   POWERS B E , SELLERS D L , LOVELETT E A et al. Remyelination reporter reveals prolonged refinement of spontaneously regenerated myelin[J]. Proc Natl Acad Sci U S A, 2013, 110 (10): 4075- 4080
doi: 10.1073/pnas.1210293110
[15]   MICHAILOV G V , SEREDA M W , BRINKMANN B G et al. Axonal neuregulin-1 regulates myelin sheath thickness[J]. Science, 2004, 304 (5671): 700- 703
doi: 10.1126/science.1095862
[16]   BRINKMANN B G , AGARWAL A , SEREDA M W et al. Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system[J]. Neuron, 2008, 59 (4): 581- 595
doi: 10.1016/j.neuron.2008.06.028
[17]   GAESSER J M , FYFFE-MARICICH S L . Intracellular signaling pathway regulation of myelination and remyelination in the CNS[J]. Exp Neurol, 2016, 283 (Pt B): 501- 511
doi: 10.1016/j.expneurol.2016.03.008
[18]   GUO F , LANG J , SOHN J et al. Canonical Wnt signaling in the oligodendroglial lineage--puzzles remain[J]. Glia, 2015, 63 (10): 1671- 1693
doi: 10.1002/glia.22813
[19]   XIE C , LI Z , ZHANG G X et al. Wnt signaling in remyelination in multiple sclerosis:friend or foe?[J]. Mol Neurobiol, 2014, 49 (3): 1117- 1125
doi: 10.1007/s12035-013-8584-6
[20]   FYFFE-MARICICH S L , SCHOTT A , KARL M et al. Signaling through ERK1/2 controls myelin thickness during myelin repair in the adult central nervous system[J]. J Neurosci, 2013, 33 (47): 18402- 18408
doi: 10.1523/JNEUROSCI.2381-13.2013
[21]   CHAN C B , LIU X , ZHAO L et al. PIKE is essential for oligodendroglia development and CNS myelination[J]. Proc Natl Acad Sci U S A, 2014, 111 (5): 1993- 1998
doi: 10.1073/pnas.1318185111
[22]   FILIPPI M , ROCCA M A . MRI evidence for multiple sclerosis as a diffuse disease of the central nervous system[J]. J Neurol, 2005, 252 (Suppl 5): v16- 24
doi: 10.1007/s00415-005-5004-5
[23]   REYNOLDS R , RONCAROLI F , NICHOLAS R et al. The neuropathological basis of clinical progression in multiple sclerosis[J]. Acta Neuropathol, 2011, 122 (2): 155- 170
doi: 10.1007/s00401-011-0840-0
[24]   PATRIKIOS P , STADELMANN C , KUTZELNIGG A et al. Remyelination is extensive in a subset of multiple sclerosis patients[J]. Brain, 2006, 129 (Pt 12): 3165- 3172
doi: 10.1093/brain/awl217
[25]   COMPSTON A , COLES A . Multiple sclerosis[J]. Lancet, 2008, 372 (9648): 1502- 1517
doi: 10.1016/S0140-6736(08)61620-7
[26]   HE? K , STAROST L , KIERAN N W et al. Lesion stage-dependent causes for impaired remyelination in MS[J]. Acta Neuropathol, 2020, 140 (3): 359- 375
doi: 10.1007/s00401-020-02189-9
[27]   NEUMANN B , SEGEL M , CHALUT K J et al. Remyelination and ageing:Reversing the ravages of time[J]. Mult Scler, 2019, 25 (14): 1835- 1841
doi: 10.1177/1352458519884006
[28]   RUCKH J M , ZHAO J W , SHADRACH J L et al. Rejuvenation of regeneration in the aging central nervous system[J]. Cell Stem Cell, 2012, 10 (1): 96- 103
doi: 10.1016/j.stem.2011.11.019
[29]   NEUMANN B , BAROR R , ZHAO C et al. Metformin restores CNS remyelination capacity by rejuvenating aged stem cells[J]. Cell Stem Cell, 2019, 25 (4): 473- 485
doi: 10.1016/j.stem.2019.08.015
[30]   LU F , YIN D , PU Y et al. Shikimic acid promotes oligodendrocyte precursor cell differentiation and accelerates remyelination in mice[J]. Neurosci Bull, 2019, 35 (3): 434- 446
doi: 10.1007/s12264-018-0322-7
[31]   MEI F , FANCY S , SHEN Y A et al. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis[J]. Nat Med, 2014, 20 (8): 954- 960
doi: 10.1038/nm.3618
[32]   WANG F , REN S Y , CHEN J F et al. Myelin degeneration and diminished myelin renewal contribute to age-related deficits in memory[J]. Nat Neurosci, 2020, 23 (4): 481- 486
doi: 10.1038/s41593-020-0588-8
[33]   WANG F , YANG Y J , YANG N et al. Enhancing oligodendrocyte myelination rescues synaptic loss and improves functional recovery after chronic hypoxia[J]. Neuron, 2018, 99 (4): 689- 701
doi: 10.1016/j.neuron.2018.07.017
[34]   STEINGO B , AL MALIK Y , BASS A D et al. Long-term efficacy and safety of alemtuzumab in patients with RRMS:12-year follow-up of CAMMS223[J]. J Neurol, 2020,
doi: 10.1007/s00415-020-09983-1
[35]   ROLLA S , MAGLIONE A , DE MERCANTI S F et al. The meaning of immune reconstitution after alemtuzumab therapy in multiple sclerosis[J]. Cells, 2020, 9 (6): 1396- 1413
doi: 10.3390/cells9061396
[36]   FRANKLIN R J , FFRENCH-CONSTANT C , EDGAR J M et al. Neuroprotection and repair in multiple sclerosis[J]. Nat Rev Neurol, 2012, 8 (11): 624- 634
doi: 10.1038/nrneurol.2012.200
[37]   KUHLMANN T , MIRON V , CUI Q et al. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis[J]. Brain, 2008, 131 (Pt 7): 1749- 1758
doi: 10.1093/brain/awn096
[38]   SHI Y , SHAO Q , LI Z et al. Myt1L promotes differentiation of oligodendrocyte precursor cells and is necessary for remyelination after lysolecithin-induced demyelination[J]. Neurosci Bull, 2018, 34 (2): 247- 260
doi: 10.1007/s12264-018-0207-9
[39]   LI C , XIAO L , LIU X et al. A functional role of NMDA receptor in regulating the differentiation of oligodendrocyte precursor cells and remyelination[J]. Glia, 2013, 61 (5): 732- 749
doi: 10.1002/glia.22469
[40]   LI T , NIU J , YU G et al. Connexin 43 deletion in astrocytes promotes CNS remyelination by modulating local inflammation[J]. Glia, 2020, 68 (6): 1201- 1212
doi: 10.1002/glia.23770
[41]   LECCA D , RAFFAELE S , ABBRACCHIO M P et al. Regulation and signaling of the GPR17 receptor in oligodendroglial cells[J]. Glia, 2020, 68 (10): 1957- 1967
doi: 10.1002/glia.23807
[42]   DZIEDZIC A , MILLER E , SALUK-BIJAK J et al. The GPR17 receptor-A promising goal for therapy and a potential marker of the neurodegenerative process in multiple sclerosis[J]. Int J Mol Sci, 2020, 21 (5): 1852- 1868
doi: 10.3390/ijms21051852
[43]   ZHAO B , WANG H , LI C X et al. GPR17 mediates ischemia-like neuronal injury via microglial activation[J]. Int J Mol Med, 2018, 42 (5): 2750- 2762
doi: 10.3892/ijmm.2018.3848
[44]   MEI F , MAYORAL S R , NOBUTA H et al. Identification of the Kappa-opioid receptor as a therapeutic target for oligodendrocyte remyelination[J]. J Neurosci, 2016, 36 (30): 7925- 7935
doi: 10.1523/JNEUROSCI.1493-16.2016
[45]   CANTUTI-CASTELVETRI L , FITZNER D , BOSCH-QUERALT M et al. Defective cholesterol clearance limits remyelination in the aged central nervous system[J]. Science, 2018, 359 (6376): 684- 688
doi: 10.1126/science.aan4183
[46]   HUBLER Z , ALLIMUTHU D , BEDERMAN I et al. Accumulation of 8, 9-unsaturated sterols drives oligodendrocyte formation and remyelination[J]. Nature, 2018, 560 (7718): 372- 376
doi: 10.1038/s41586-018-0360-3
[47]   RANKIN KA , MEI F , KIM K et al. Selective estrogen receptor modulators enhance CNS remyelination independent of estrogen receptors[J]. J Neurosci, 2019, 39 (12): 2184- 2194
doi: 10.1523/JNEUROSCI.1530-18.2019
[48]   MIRON V E , BOYD A , ZHAO J W et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination[J]. Nat Neurosci, 2013, 16 (9): 1211- 1218
doi: 10.1038/nn.3469
No related articles found!