Please wait a minute...
J Zhejiang Univ (Med Sci)  2020, Vol. 49 Issue (2): 253-259    DOI: 10.3785/j.issn.1008-9292.2020.03.07
Establishment of a rapid identification of adverse drug reaction program in R language implementation based on monitoring data
HONG Dongsheng1,2(),NI Jian2,3,SHAN Wenya1,2,LI Lu1,2,HU Xi1,2,YANG Hongyu1,2,ZHAO Qingwei2,*(),ZHANG Xingguo1,*()
1. Department of Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
2. Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
3. Information Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
Download: HTML( 18 )   PDF(1085KB)
Export: BibTeX | EndNote (RIS)      


Objective: To establish a clinically applicable model of rapid identification of adverse drug reaction program (RiADP) for risk management and decision-making of clinical drug use. Methods: Based on the theory of disproportion analysis, frequency method and Bayes method, a clinically applicable RiADP model in R language background was established, and the parameters of the model were interpreted by MedDRA coding. Based on the actual monitoring data of FDA, the model was validated by the assessing hepatotoxicity of lopinavir/ritonavir (LPV/r). Results: The established RiADP model included four parameters: standard value of adverse drug reaction signal information, empirical Bayesian geometric mean value, ratio of reporting ratio and number of adverse drug reaction cases. Through the application of R language parameter package "phViD", the model parameters could be output quickly. After being encoded by MedDRA, it was converted into clinical terms to form a clinical interpretation report of adverse drug reactions. In addition, the evaluation results of LPV/r hepatotoxicity by the model were matched with the results reported in latest literature, which also proved the reliability of the model results. Conclusion: In this study, a rapid identification method of adverse reactions based on post marketing drug monitoring data was established in R language environment, which is capable of sending rapid warning of adverse reactions of target drugs in public health emergencies, and providing intuitive evidence for risk management and decision-making of clinical drugs.

Key wordsCoronavirus disease 2019      Severe acute respiratory syndrome coronavirus 2      Novel coronavirus pneumonia      Adverse reaction monitoring      Drug evaluation      R language     
Received: 06 March 2020      Published: 14 March 2020
CLC:  R969.3  
Corresponding Authors: ZHAO Qingwei,ZHANG Xingguo     E-mail:;;
Cite this article:

HONG Dongsheng,NI Jian,SHAN Wenya,LI Lu,HU Xi,YANG Hongyu,ZHAO Qingwei,ZHANG Xingguo. Establishment of a rapid identification of adverse drug reaction program in R language implementation based on monitoring data. J Zhejiang Univ (Med Sci), 2020, 49(2): 253-259.

URL:     OR


目的: 构建药物不良反应信号快速识别(RiADP)模型,为临床用药的风险管理和科学决策提供帮助。方法: 在不相称性测定分析理论的基础上,结合频数法和贝叶斯法建立一种R语言环境下临床可用的RiADP模型,并通过国际医学用语词典(MedDRA)编码,实现模型参数的临床解读。以美国食品药品监督管理局实际监测数据为依据,利用建立的RiADP模型对拟用于2019冠状病毒病治疗的抗病毒药物洛匹那韦/利托那韦的肝毒性进行识别,从而对模型进行验证。结果: 本研究提出的RiADP模型包括4个模型参数:药物不良反应信号信息标准值、经验贝叶斯几何均值、报告比值比和不良反应报告例数。通过R语言参数包“PhViD”可以实现模型参数的快速输出,MedDRA编码后可转化为临床术语,形成药物不良反应的临床解释报告。模型对洛匹那韦/利托那韦肝毒性的评估结果与最新研究报道匹配,证明模型结果可靠。结论: 本研究在R语言环境下提出了一种基于上市后药物监测数据的不良反应信号快速识别方法,可以在突发公共卫生事件下实现目标药物不良反应的快速预警,为临床用药的风险管理和决策提供循证依据。

关键词: 2019冠状病毒病,  严重急性呼吸综合征冠状病毒2,  新型冠状病毒肺炎,  不良反应监测,  药物评价,  R语言 
Fig 1 Data analysis process of RiADP model
项目 目标ADE报告数# 其他ADE报告数 合计
目标药物* 72 9530 9602
其他药物 34 473 11 126 884 11 161 357
合计 34 545 11 136 414 11 170 959
Tab 1 Monitoring data of abnormal liver function caused by lopinvir and ritonavir in FDA
[1]   GUAN W J , NI ZY , HU Y et al. Clinical characteristics of coronavirus disease 2019 in China[J]. N Engl J Med, 2020,
doi: 10.1056/NEJMoa2002032
[2]   PARASRAMPURIA D A , BENET L Z , SHARMA A . Why drugs fail in late stages of development: case study analyses from the last decade and recommendations[J]. AAPS J, 2018, 20 (3): 46
doi: 10.1208/s12248-018-0204-y
[3]   LONERGAN M , SENN S J , MCNAMEE C et al. Defining drug response for stratified medicine[J]. Drug Discov Today, 2017, 22 (1): 173- 179
doi: 10.1016/j.drudis.2016.10.016
[4]   PERINO J , MOTTAL N , BOHBOT Y et al. Cardiac failure in patients treated with azacitidine, a pyrimidine analogue: Case reports and disproportionality analyses in Vigibase[J]. Br J Clin Pharmacol, 2020,
doi: 10.1111/bcp.14211
[5]   MARWITZ K , JONES S C , KORTEPETER C M et al. An evaluation of postmarketing reports with an outcome of death in the US FDA adverse event reporting system[J]. Drug Saf, 2020,
doi: 10.1007/s40264-020-00908-5
[6]   GENTILI M , POZZI M , PEETERS G et al. Review of the methods to obtain paediatric drug safety information: spontaneous reporting and healthcare databases, active surveillance programmes, systematic reviews and meta-analyses[J]. Curr Clin Pharmacol, 2018, 13 (1): 28- 39
doi: 10.2174/1574884713666180206164634
[7]   BEHERA S K , DAS S , XAVIER A S et al. Comparison of different methods for causality assessment of adverse drug reactions[J]. Int J Clin Pharm, 2018, 40 (4): 903- 910
doi: 10.1007/s11096-018-0694-9
[8]   BATE A . Bayesian confidence propagation neural network[J]. Drug Saf, 2007, 30 (7): 623- 625
doi: 10.2165/00002018-200730070-00011
[9]   KUMAR A , AHUJA J , SHRIVASTAVA TP et al. Statistical signal process in R language in the pharmacovigilance programme of India[J]. Ther Innov Regul Sci, 2018, 52 (3): 329- 333
doi: 10.1177/2168479017728988
[10]   TUBERT-BITTER P , BéGAUD B , AHMED I . Comparison of two drug safety signals in a pharmacovigilance data mining framework[J]. Stat Methods Med Res, 2016, 25 (2): 615- 629
doi: 10.1177/0962280212462295
[11]   TRIPPE Z A , BRENDANI B , MEIER C et al. Identification of substandard medicines via disproportionality analysis of individual case safety reports[J]. Drug Saf, 2017, 40 (4): 293- 303
doi: 10.1007/s40264-016-0499-5
[12]   AHMED I , THIESSARD F , MIREMONT-SALAMé G et al. Early detection of pharmacovigilance signals with automated methods based on false discovery rates: a comparative study[J]. Drug Saf, 2012, 35 (6): 495- 506
doi: 10.2165/11597180-000000000-00000
[13]   TIMBROOK T T , MCKAY L , SUTTON J D et al. Disproportionality analysis of safety with nafcillin and oxacillin with the FDA Adverse Event Reporting System (FAERS)[J]. Antimicrob Agents Chemother, 2020, 64 (3):
doi: 10.1128/AAC.01818-19
[14]   SAKAEDA T , TAMON A , KADOYAMA K et al. Data mining of the public version of the FDA Adverse Event Reporting System[J]. Int J Med Sci, 2013, 10 (7): 796- 803
doi: 10.7150/ijms.6048
[15]   VERDEN A , DIMBIL M , KYLE R et al. Analysis of spontaneous postmarket case reports submitted to the FDA regarding thromboembolic adverse events and JAK inhibitors[J]. Drug Saf, 2018, 41 (4): 357- 361
doi: 10.1007/s40264-017-0622-2
[16]   BROWN E G . Methods and pitfalls in searching drug safety databases utilising the Medical Dictionary for Regulatory Activities (MedDRA)[J]. Drug Saf, 2003, 26 (3): 145- 158
doi: 10.2165/00002018-200326030-00002
[17]   WHO. Global Health Observatory (GHO) data[DB/OL].[2020-03-10].
[18]   MANSUR J M . Medication safety systems and the important role of pharmacists[J]. Drugs Aging, 2016, 33 (3): 213- 221
doi: 10.1007/s40266-016-0358-1
[19]   LINDQUIST M . Use of triage strategies in the WHO signal-detection process[J]. Drug Saf, 2007, 30 (7): 635- 637
doi: 10.2165/00002018-200730070-00014
[20]   SZARFMAN A , TONNING J M , DORAISWAMY P M . Pharmacovigilance in the 21st century: new systematic tools for an old problem[J]. Pharmacotherapy, 2004, 24 (9): 1099- 1104
doi: 10.1592/phco.24.13.1099.38090
[21]   SCHOLL J H , VAN PUIJENBROEK E P . The value of time-to-onset in statistical signal detection of adverse drug reactions: a comparison with disproportionality analysis in spontaneous reports from the Netherlands[J]. Pharmacoepidemiol Drug Saf, 2016, 25 (12): 1361- 1367
doi: 10.1002/pds.4115
[1] WANG Jincheng,LIU Jinpeng,WANG Yuanyuan,LIU Wei,CHEN Xiaoqun,SUN Chao,SHEN Xiaoyong,WANG Qidong,WU Yaping,LIANG Wenjie,RUAN Lingxiang. Dynamic changes of chest CT imaging in patients with COVID-19[J]. J Zhejiang Univ (Med Sci), 2020, 49(2): 191-197.
[2] ZHANG Xiaoyan, SUN Wei, SHANG Shiqiang, MAO Jianhua, FU Junfen, SHU Qiang, JIANG Kewen. Principles and suggestions on biosafety protection of biological specimen preservation during prevalence of COVID-19[J]. J Zhejiang Univ (Med Sci), 2020, 49(2): 170-177.
[3] CAO Shengli,FENG Peihua,SHI Pengpeng. Study on the epidemic development of COVID-19 in Hubei province by a modified SEIR model[J]. J Zhejiang Univ (Med Sci), 2020, 49(2): 178-184.
[4] CHEN Jun,LIU Danping,LIU Li,LIU Ping,XU Qingnian,XIA Lu,LING Yun,HUANG Dan,SONG Shuli,ZHANG Dandan,QIAN Zhiping,LI Tao,SHEN Yinzhong,LU Hongzhou. A pilot study of hydroxychloroquine in treatment of patients with moderate COVID-19[J]. J Zhejiang Univ (Med Sci), 2020, 49(2): 215-219.
[5] CHEN Zhimin,FU Junfen,SHU Qiang,WANG Wei,CHEN Yinghu,HUA Chunzhen,LI Fubang,LIN Ru,TANG Lanfang,WANG Tianlin,WANG Yingshuo,XU Weize,YANG Zihao,YE Sheng,YUAN Tianming,ZHANG Chenmei,ZHANG Yuanyuan. Diagnosis and treatment recommendation for pediatric COVID-19 (the second edition)[J]. J Zhejiang Univ (Med Sci), 2020, 49(2): 139-146.
[6] XU Kaijin,CAI Hongliu,SHEN Yihong,NI Qin,CHEN Yu,HU Shaohua,LI Jianping,WANG Huafen,YU Liang,HUANG He,QIU Yunqing,WEI Guoqing,FANG Qiang,ZHOU Jianying,SHENG Jifang,LIANG Tingbo,LI Lanjuan. Management of COVID-19: the Zhejiang experience[J]. J Zhejiang Univ (Med Sci), 2020, 49(2): 147-157.
[7] JIANG Saiping,LI Lu,RU Renping,ZHANG Chunhong,RAO Yuefeng,LIN Bin,WANG Rongrong,CHEN Na,WANG Xiaojuan,CAI Hongliu,SHENG Jifang,ZHOU Jianying,LU Xiaoyang,QIU Yunqing. Pharmaceutical care for severe and critically ill patients with COVID-19[J]. J Zhejiang Univ (Med Sci), 2020, 49(2): 158-169.
[8] LI Xin,DAI Tian,WANG Hong,SHI Junnian,YUAN Wei,LI Jing,CHEN Lijun,ZHANG Tianming,ZHANG Shanshan,KONG Yan,YUE Ning,SHI Hui,HE Yuping,HU Huifang,LIU Furong,YANG Caixia. Clinical analysis of suspected COVID-19 patients with anxiety and depression[J]. J Zhejiang Univ (Med Sci), 2020, 49(2): 203-208.
[9] LUO Song,YANG Lijuan,WANG Chun,LIU Chuanmiao,LI Dianming. Clinical observation of 6 severe COVID-19 patients treated with plasma exchange or tocilizumab[J]. J Zhejiang Univ (Med Sci), 2020, 49(2): 227-231.
[10] ZHONG Qi,LI Zhi,SHEN Xiaoyong,XU Kaijin,SHEN Yihong,FANG Qiang,CHEN Feng,LIANG Tingbo. CT imaging features of patients with different clinical types of COVID-19[J]. J Zhejiang Univ (Med Sci), 2020, 49(2): 198-202.
[11] KANG Xianhui,ZHANG Rong,HE Huiliang,YAO Yongxing,ZHENG Yueying,WEN Xiaohong,ZHU Shengmei. Anesthesia management in cesarean section for patient with COVID-19: a case report[J]. J Zhejiang Univ (Med Sci), 2020, 49(2): 249-252.
[12] CHEN Xu,LI Yang,WANG Jinxi,CAI Hongliu,CAO Hongcui,SHENG Jifang. Pregnant women complicated with COVID-19: a clinical analysis of 3 cases[J]. J Zhejiang Univ (Med Sci), 2020, 49(2): 240-244.
[13] SHEN Lihua,HUANG Fei,CHEN Xiang,XIONG Zuan,YANG Xiaoyu,LI Hui,CHENG Feng,GUO Jian,GONG Guofu. Diagnostic efficacy of three test kits for SARS-CoV-2 nucleic acid detection[J]. J Zhejiang Univ (Med Sci), 2020, 49(2): 185-190.
[14] ZHAGN Sheng,LI Danping,CHEN Huazhong,ZHENG Dan,ZHOU Yiping,CHEN Baoguo,SHI Weiwu,LIN Ronghai. Dynamic inflammatory response in a critically ill COVID-19 patient treated with corticosteroids[J]. J Zhejiang Univ (Med Sci), 2020, 49(2): 220-226.
[15] LI Youjiang,HU Yingying,ZHANG Xiaodong,YU Yuanyuan,LI Bin,WU Jianguo,WU Yingping,XIA Xiaoping,XU Jian. Follow-up testing of viral nucleic acid in discharged patients with moderate type of COVID-19[J]. J Zhejiang Univ (Med Sci), 2020, 49(2): 270-274.