Please wait a minute...
J Zhejiang Univ (Med Sci)  2020, Vol. 49 Issue (1): 58-70    DOI: 10.3785/j.issn.1008-9292.2020.02.25
    
Progress on epigenetic regulation of iron homeostasis
DUAN Lingyan1(),YIN Xiangju2,MENG Hong'en1,FANG Xuexian1,MIN Junxia1,WANG Fudi1,*()
1. School of Medicine, Zhejiang University, Hangzhou 310058, China
2. School of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, Henan Province, China
Download: HTML( 13 )   PDF(3310KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Iron homeostasis plays an important role for the maintenance of human health. It is known that iron metabolism is tightly regulated by several key genes, including divalent metal transport-1(DMT1), transferrin receptor 1(TFR1), transferrin receptor 2(TFR2), ferroportin(FPN), hepcidin(HAMP), hemojuvelin(HJV) and Ferritin H. Recently, it is reported that DNA methylation, histone acetylation, and microRNA (miRNA) epigenetically regulated iron homeostasis. Among these epigenetic regulators, DNA hypermethylation of the promoter region of FPN, TFR2, HAMP, HJV and bone morphogenetic protein 6 (BMP6) genes result in inhibitory effect on the expression of these iron-related gene. In addition, histone deacetylase (HADC) suppresses HAMP gene expression. On the contrary, HADC inhibitor upregulates HAMP gene expression. Additional reports showed that miRNA can also modulate iron absorption, transport, storage and utilization via downregulation of DMT1, FPN, TFR1, TFR2, Ferritin H and other genes. It is noteworthy that some key epigenetic regulatory enzymes, such as DNA demethylase TET2 and histone lysine demethylase JmjC KDMs, require iron for the enzymatic activities. In this review, we summarize the recent progress of DNA methylation, histone acetylation and miRNA in regulating iron metabolism and also discuss the future research directions.



Key wordsIron/metabolism      DNA methylation      Histones/protein modification      MicroRNAs      Epigenetics      Review     
Received: 19 November 2019      Published: 08 June 2020
CLC:  R333.6  
  R394  
Corresponding Authors: WANG Fudi     E-mail: duanlingyan@zju.edu.cn;fwang@zju.edu.cn
Cite this article:

DUAN Lingyan,YIN Xiangju,MENG Hong'en,FANG Xuexian,MIN Junxia,WANG Fudi. Progress on epigenetic regulation of iron homeostasis. J Zhejiang Univ (Med Sci), 2020, 49(1): 58-70.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2020.02.25     OR     http://www.zjujournals.com/med/Y2020/V49/I1/58


铁稳态代谢表观遗传调控机制的研究进展

铁稳态在机体生长发育和健康维持中发挥重要作用,而机体铁稳态代谢受二价金属离子转运蛋白(DMT1)、转铁蛋白受体1(TFR1)、转铁蛋白受体2(TFR2)、铁外排蛋白(FPN)、铁调素(HAMP)、铁调素调节蛋白(HJV)、铁蛋白重链(Ferritin H)等关键基因精密调控。近年研究报道,DNA甲基化、组蛋白乙酰化和微RNA(miRNA)等表观遗传机制可发挥调控铁稳态的作用。其中,DNA甲基化可通过调控FPNTFR2HAMPHJV和骨形态生成蛋白BMP家族成员6(BMP6)等铁代谢基因启动子区甲基化水平而影响这些基因的表达。此外,组蛋白脱乙酰酶(HDAC)能够通过抑制HAMP基因表达而调控铁代谢;而HDAC抑制剂可促进HAMP基因表达。多个miRNA可靶向DMT1FPNTFR1TFR2Ferritin H等基因,通过抑制这些铁代谢关键基因的表达而影响机体铁的吸收、转运、储存和利用过程。值得关注的是,表观遗传调控的一些关键酶,如DNA去甲基化酶TET2和组蛋白赖氨酸去甲基酶JmjC KDM需要铁离子才能发挥酶促活性。本文综述了DNA甲基化、组蛋白乙酰化和miRNA等表观遗传机制调控铁稳态代谢的国内外最新研究进展,并针对未来研究方向进行了讨论。


关键词: 铁/代谢,  DNA甲基化,  组蛋白类/蛋白质修饰,  微RNA,  表观遗传,  综述 
Fig 1 Iron homeostasis metabolism and epigenetic regulation of iron metabolism
Fig 2 Epigenetic regulation of hepcidin
靶点 微RNA 文献
二价金属离子转运蛋白 miR-let-7d、miR-16家族 [81-82]
铁外排蛋白 miR-20a、miR-20b、miR-485-3p [83-85]
转铁蛋白受体1 miR-210、miR-320、miR-152、miR-148a、miR-7-5p、miR-141-3p [86-90]
铁硫簇组装蛋白 miR-210 [91]
转铁蛋白受体2 miR-221 [92]
核转录因子E2相关因子2 miR-144 [93]
铁蛋白重链 miR-200b [94]
铁反应元件结合蛋白2 miR-29家族 [95]
骨形态生成蛋白Ⅰ型受体 miR-130a [96]
铁调素调节蛋白 miR-122 [97]
血色素沉着病蛋白 miR-122 [97]
5-氨基酮戊酸合成酶 miR-218 [98]
γ-珠蛋白 miR-96 [99]
Bach 1(一种编码血红素调节转录抑制因子的基因) miR-let-7、miR-196、miR-27a-5p [100-102]
乳铁蛋白 miR-214 [103]
乳铁蛋白受体 miR-584 [104]
Tab 1 Known miRNA regulate iron-related genes
[1]   HENTZE M W , MUCKENTHALER M U , ANDREWS N C . Balancing acts:molecular control of mammalian iron metabolism[J]. Cell, 2004, 117 (3): 285- 297
doi: 10.1016/s0092-8674(04)00343-5
[2]   MCLEAN E , COGSWELL M , EGLI I et al. Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993-2005[J]. Public Health Nutr, 2009, 12 (4): 444- 454
doi: 10.1017/S1368980008002401
[3]   PIETRANGELO A . Hereditary hemochromatosis-a new look at an old disease[J]. N Engl J Med, 2004, 350 (23): 2383- 2397
doi: 10.1056/NEJMra031573
[4]   FERNáNDEZ-REAL J M , LóPEZ-BERMEJO A , RICART W . Cross-talk between iron metabolism and diabetes[J]. Diabetes, 2002, 51 (8): 2348- 2354
doi: 10.2337/diabetes.51.8.2348
[5]   GUYADER D , JACQUELINET C , MOIRAND R et al. Noninvasive prediction of fibrosis in C282Y homozygous hemochromatosis[J]. Gastroenterology, 1998, 115 (4): 929- 936
doi: 10.1016/s0016-5085(98)70265-3
[6]   FEDER J N , GNIRKE A , THOMAS W et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis[J]. Nat Genet, 1996, 13 (4): 399- 408
doi: 10.1038/ng0896-399
[7]   ROETTO A , PAPANIKOLAOU G , POLITOU M et al. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis[J]. Nat Genet, 2003, 33 (1): 21- 22
doi: 10.1038/ng1053
[8]   PAPANIKOLAOU G , SAMUELS M E , LUDWIG E H et al. Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis[J]. Nat Genet, 2004, 36 (1): 77- 82
doi: 10.1038/ng1274
[9]   MONTOSI G , DONOVAN A , TOTARO A et al. Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) gene[J]. J Clin Invest, 2001, 108 (4): 619- 623
doi: 10.1172/JCI13468
[10]   CAMASCHELLA C , ROETTO A , CALI A et al. The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22[J]. Nat Genet, 2000, 25 (1): 14- 15
doi: 10.1038/75534
[11]   GUO S , JIANG S , EPPERLA N et al. A gene-based recessive diplotype exome scan discovers FGF6, a novel hepcidin-regulating iron-metabolism gene[J]. Blood, 2019, 133 (17): 1888- 1898
doi: 10.1182/blood-2018-10-879585
[12]   DEV S , BABITT J L . Overview of iron metabolism in health and disease[J]. Hemodial Int, 2017, 21:S6- 6S20
doi: 10.1111/hdi.12542
[13]   DIXON S J , LEMBERG K M , LAMPRECHT M R et al. Ferroptosis:an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149 (5): 1060- 1072
doi: 10.1016/j.cell.2012.03.042
[14]   WANG H , AN P , XIE E et al. Characterization of ferroptosis in murine models of hemochromatosis[J]. Hepatology, 2017, 66 (2): 449- 465
doi: 10.1002/hep.29117
[15]   FANG X , WANG H , HAN D et al. Ferroptosis as a target for protection against cardiomyopathy[J]. Proc Natl Acad Sci U S A, 2019, 116 (7): 2672- 2680
doi: 10.1073/pnas.1821022116
[16]   PANTOPOULOS K . Iron metabolism and the IRE/IRP regulatory system:an update[J]. Ann N Y Acad Sci, 2004, 1012:1- 13
doi: 10.1196/annals.1306.001
[17]   GANZ T , NEMETH E . The hepcidin-ferroportin system as a therapeutic target in anemias and iron overload disorders[J]. Hematology Am Soc Hematol Educ Program, 2011, 2011:538- 542
doi: 10.1182/asheducation-2011.1.538
[18]   NEMETH E , TUTTLE M S , POWELSON J et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization[J]. Science, 2004, 306 (5704): 2090- 2093
doi: 10.1126/science.1104742
[19]   BABITT J L , HUANG F W , WRIGHTING D M et al. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression[J]. Nat Genet, 2006, 38 (5): 531- 539
doi: 10.1038/ng1777
[20]   CORRADINI E , MEYNARD D , WU Q et al. Serum and liver iron differently regulate the bone morphogenetic protein 6(BMP6)-SMAD signaling pathway in mice[J]. Hepatology, 2011, 54 (1): 273- 284
doi: 10.1002/hep.24359
[21]   BABITT J L , HUANG F W , XIA Y et al. Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance[J]. J Clin Invest, 2007, 117 (7): 1933- 1939
doi: 10.1172/JCI31342
[22]   GOSWAMI T , ANDREWS N C . Hereditary hemochromatosis protein, HFE, interaction with transferrin receptor 2 suggests a molecular mechanism for mammalian iron sensing[J]. J Biol Chem, 2006, 281 (39): 28494- 28498
doi: 10.1074/jbc.C600197200
[23]   RAMOS E , KAUTZ L , RODRIGUEZ R et al. Evidence for distinct pathways of hepcidin regulation by acute and chronic iron loading in mice[J]. Hepatology, 2011, 53 (4): 1333- 1341
doi: 10.1002/hep.24178
[24]   SILVESTRI L , PAGANI A , NAI A et al. The serine protease matriptase-2(TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin[J]. Cell Metab, 2008, 8 (6): 502- 511
doi: 10.1016/j.cmet.2008.09.012
[25]   BIRD A . DNA methylation patterns and epigenetic memory[J]. Genes Dev, 2002, 16 (1): 6- 21
doi: 10.1101/gad.947102
[26]   YAMAMOTO M , TANAKA H , TOKI Y et al. Iron-induced epigenetic abnormalities of mouse bone marrow through aberrant activation of aconitase and isocitrate dehydrogenase[J]. Int J Hematol, 2016, 104 (4): 491- 501
doi: 10.1007/s12185-016-2054-7
[27]   YE Q , TRIVEDI M , ZHANG Y et al. Brain iron loading impairs DNA methylation and alters GABAergic function in mice[J]. FASEB J, 2019, 33 (2): 2460- 2471
doi: 10.1096/fj.201801116RR
[28]   POGRIBNY I P , TRYNDYAK V P , POGRIBNA M et al. Modulation of intracellular iron metabolism by iron chelation affects chromatin remodeling proteins and corresponding epigenetic modifications in breast cancer cells and increases their sensitivity to chemotherapeutic agents[J]. Int J Oncol, 2013, 42 (5): 1822- 1832
doi: 10.3892/ijo.2013.1855
[29]   DEVIREDDY L R , HART D O , GOETZ D H et al. A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production[J]. Cell, 2010, 141 (6): 1006- 1017
doi: 10.1016/j.cell.2010.04.040
[30]   LIU Z , CIOCEA A , DEVIREDDY L . Endogenous siderophore 2, 5-dihydroxybenzoic acid deficiency promotes anemia and splenic iron overload in mice[J]. Mol Cell Biol, 2014, 34 (13): 2533- 2546
doi: 10.1128/MCB.00231-14
[31]   ZHAO M , LI M Y , GAO X F et al. Downregulation of BDH2 modulates iron homeostasis and promotes DNA demethylation in CD4+ T cells of systemic lupus erythematosus[J]. Clin Immunol, 2018, 187:113- 121
doi: 10.1016/j.clim.2017.11.002
[32]   LU Q , KAPLAN M , RAY D et al. Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus[J]. Arthritis Rheum, 2002, 46 (5): 1282- 1291
doi: 10.1002/art.10234
[33]   KAPLAN M J , LU Q , WU A et al. Demethylation of promoter regulatory elements contributes to perforin overexpression in CD4+ lupus T cells[J]. J Immunol, 2004, 172 (6): 3652- 3661
doi: 10.4049/jimmunol.172.6.3652
[34]   LU Q , WU A , RICHARDSON B C . Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs[J]. J Immunol, 2005, 174 (10): 6212- 6219
doi: 10.4049/jimmunol.174.10.6212
[35]   LU Q , WU A , TESMER L et al. Demethylation of CD40LG on the inactive X in T cells from women with lupus[J]. J Immunol, 2007, 179 (9): 6352- 6358
doi: 10.4049/jimmunol.179.9.6352
[36]   WU H , ZHAO M , TAN L et al. The key culprit in the pathogenesis of systemic lupus erythematosus:Aberrant DNA methylation[J]. Autoimmun Rev, 2016, 15 (7): 684- 689
doi: 10.1016/j.autrev.2016.03.002
[37]   CORTELLINO S , XU J , SANNAI M et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair[J]. Cell, 2011, 146 (1): 67- 79
doi: 10.1016/j.cell.2011.06.020
[38]   ZHAO X , DAI J , MA Y et al. Dynamics of ten-eleven translocation hydroxylase family proteins and 5-hydroxymethylcytosine in oligodendrocyte differentiation[J]. Glia, 2014, 62 (6): 914- 926
doi: 10.1002/glia.22649
[39]   ZHAO M H , LIANG S , GUO J et al. Analysis of ferrous on ten-eleven translocation activity and epigenetic modifications of early mouse embryos by fluorescence microscopy[J]. Microsc Microanal, 2016, 22 (2): 342- 348
doi: 10.1017/S1431927616000040
[40]   YAN H , WANG Y , QU X et al. Distinct roles for TET family proteins in regulating human erythropoiesis[J]. Blood, 2017, 129 (14): 2002- 2012
doi: 10.1182/blood-2016-08-736587
[41]   INOKURA K , FUJIWARA T , SAITO K et al. Impact of TET2 deficiency on iron metabolism in erythroblasts[J]. Exp Hematol, 2017, 49:56- 67
doi: 10.1016/j.exphem.2017.01.002
[42]   GUO S , JIANG X , WANG Y et al. The protective role of TET2 in erythroid iron homeostasis against oxidative stress and erythropoiesis[J]. Cell Signal, 2017, 38:106- 115
doi: 10.1016/j.cellsig.2017.07.002
[43]   PINNIX Z K , MILLER L D , WANG W et al. Ferroportin and iron regulation in breast cancer progression and prognosis[J]. Sci Transl Med, 2010, 2 (43): 43ra56
doi: 10.1126/scisignal.3001127
[44]   CHEN Y , ZHANG S , WANG X et al. Disordered signaling governing ferroportin transcription favors breast cancer growth[J]. Cell Signal, 2015, 27 (1): 168- 176
doi: 10.1016/j.cellsig.2014.11.002
[45]   ZHANG S , CHANG W , WU H et al. Pan-cancer analysis of iron metabolic landscape across the Cancer Genome Atlas[J]. J Cell Physiol, 2020, 235 (2): 1013- 1024
doi: 10.1002/jcp.29017
[46]   UDALI S , CASTAGNA A , CORBELLA M et al. Hepcidin and DNA promoter methylation in hepatocellular carcinoma[J]. Eur J Clin Invest, 2018, 48 (2): e12870
doi: 10.1111/eci.12870
[47]   SHARP P A , CLARKSON R , HUSSAIN A et al. DNA methylation of hepatic iron sensing genes and the regulation of hepcidin expression[J]. PLoS One, 2018, 13 (5): e0197863
doi: 10.1371/journal.pone.0197863
[48]   HUANG Y , ZHANG H , WANG C et al. DNA methylation suppresses liver Hamp expression in response to iron deficiency after bariatric surgery[J]. Surg Obes Relat Dis, 2020, 16 (1): 109- 118
doi: 10.1016/j.soard.2019.10.005
[49]   SHUCHENG G , CHUNKANG C , YOUSHAN Z et al. Decitabine treatment could ameliorate primary iron-overload in myelodysplastic syndrome patients[J]. Cancer Invest, 2015, 33 (4): 98- 106
doi: 10.3109/07357907.2014.1001895
[50]   HE Y , CUI Y , XU B et al. Hypermethylation leads to bone morphogenetic protein 6 downregulation in hepatocellular carcinoma[J]. PLoS One, 2014, 9 (1): e87994
doi: 10.1371/journal.pone.0087994
[51]   KORNBERG R D . Structure of chromatin[J]. Annu Rev Biochem, 1977, 46:931- 954
doi: 10.1146/annurev.bi.46.070177.004435
[52]   KORNBERG R D . Chromatin structure:a repeating unit of histones and DNA[J]. Science, 1974, 184 (4139): 868- 871
doi: 10.1126/science.184.4139.868
[53]   KOUZARIDES T . Chromatin modifications and their function[J]. Cell, 2007, 128 (4): 693- 705
doi: 10.1016/j.cell.2007.02.005
[54]   SMITH B C , DENU J M . Chemical mechanisms of histone lysine and arginine modifications[J]. Biochim Biophys Acta, 2009, 1789 (1): 45- 57
doi: 10.1016/j.bbagrm.2008.06.005
[55]   BERNSTEIN B E , MEISSNER A , LANDER E S . The mammalian epigenome[J]. Cell, 2007, 128 (4): 669- 681
doi: 10.1016/j.cell.2007.01.033
[56]   SILVA P F , GARCIA V A , DORNELLES ADA S et al. Memory impairment induced by brain iron overload is accompanied by reduced H3K9 acetylation and ameliorated by sodium butyrate[J]. Neuroscience, 2012, 200:42- 49
doi: 10.1016/j.neuroscience.2011.10.038
[57]   GNANA-PRAKASAM J P , VEERANAN-KARMEGAM R , COOTHANKANDASWAMY V et al. Loss of Hfe leads to progression of tumor phenotype in primary retinal pigment epithelial cells[J]. Invest Ophthalmol Vis Sci, 2013, 54 (1): 63- 71
doi: 10.1167/iovs.12-10312
[58]   INGRASSIA R , LANZILLOTTA A , SARNICO I et al. 1B/(-)IRE DMT1 expression during brain ischemia contributes to cell death mediated by NF-kappaB/RelA acetylation at Lys310[J]. PLoS One, 2012, 7 (5): e38019
doi: 10.1371/journal.pone.0038019
[59]   WANG W , DI X , TORTI S V et al. Ferritin H induction by histone deacetylase inhibitors[J]. Biochem Pharmacol, 2010, 80 (3): 316- 324
doi: 10.1016/j.bcp.2010.04.008
[60]   TAO Y , WU Q , GUO X et al. MBD5 regulates iron metabolism via methylation-independent genomic targeting of Fth1 through KAT2A in mice[J]. Br J Haematol, 2014, 166 (2): 279- 291
doi: 10.1111/bjh.12863
[61]   YANG X , PARK S H , CHANG H C et al. Sirtuin 2 regulates cellular iron homeostasis via deacetylation of transcription factor NRF2[J]. J Clin Invest, 2017, 127 (4): 1505- 1516
doi: 10.1172/JCI88574
[62]   WANG R H , LI C , XU X et al. A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression[J]. Cell Metab, 2005, 2 (6): 399- 409
doi: 10.1016/j.cmet.2005.10.010
[63]   LIU H , TRINH T L , DONG H et al. Iron regulator hepcidin exhibits antiviral activity against hepatitis C virus[J]. PLoS One, 2012, 7 (10): e46631
doi: 10.1371/journal.pone.0046631
[64]   MIURA K , TAURA K , KODAMA Y et al. Hepatitis C virus-induced oxidative stress suppresses hepcidin expression through increased histone deacetylase activity[J]. Hepatology, 2008, 48 (5): 1420- 1429
doi: 10.1002/hep.22486
[65]   PASRICHA S R , LIM P J , DUARTE T L et al. Hepcidin is regulated by promoter-associated histone acetylation and HDAC3[J]. Nat Commun, 2017, 8 (1): 403
doi: 10.1038/s41467-017-00500-z
[66]   KANAMORI Y , MURAKAMI M , MATSUI T et al. Hepcidin expression in liver cells:evaluation of mRNA levels and transcriptional regulation[J]. Gene, 2014, 546 (1): 50- 55
doi: 10.1016/j.gene.2014.05.040
[67]   GAUN V , PATCHEN B , VOLOVETZ J et al. A chemical screen identifies small molecules that regulate hepcidin expression[J]. Blood Cells Mol Dis, 2014, 53 (4): 231- 240
doi: 10.1016/j.bcmd.2014.06.002
[68]   YIN X , WU Q , MONGA J et al. HDAC1 governs iron homeostasis independent of histone deacetylation in iron-overload murine models[J]. Antioxid Redox Signal, 2018, 28 (13): 1224- 1237
doi: 10.1089/ars.2017.7161
[69]   SHI Y , LAN F , MATSON C et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1[J]. Cell, 2004, 119 (7): 941- 953
doi: 10.1016/j.cell.2004.12.012
[70]   MOSAMMAPARAST N , SHI Y . Reversal of histone methylation:biochemical and molecular mechanisms of histone demethylases[J]. Annu Rev Biochem, 2010, 79:155- 179
doi: 10.1146/annurev.biochem.78.070907.103946
[71]   HAYWARD D , COLE P A . LSD1 histone demethylase assays and inhibition[J]. Methods Enzymol, 2016, 573:261- 278
doi: 10.1016/bs.mie.2016.01.020
[72]   MAIQUES-DIAZ A , SOMERVAILLE T C . LSD1:biologic roles and therapeutic targeting[J]. Epigenomics, 2016, 8 (8): 1103- 1116
doi: 10.2217/epi-2016-0009
[73]   SORNA V , THEISEN E R , STEPHENS B et al. High-throughput virtual screening identifies novel N'-(1-phenylethylidene)-benzohydrazides as potent, specific, and reversible LSD1 inhibitors[J]. J Med Chem, 2013, 56 (23): 9496- 9508
doi: 10.1021/jm400870h
[74]   SARNO F , PAPULINO C , FRANCI G et al. 3-chloro-n'-(2-hydroxybenzylidene) benzohydrazide:an LSD1-selective inhibitor and iron-chelating agent for anticancer therapy[J]. Front Pharmacol, 2018, 9:1006
doi: 10.3389/fphar.2018.01006
[75]   ROATSCH M , HOFFMANN I , ABBOUD M I et al. The clinically used iron chelator deferasirox is an inhibitor of epigenetic JumonjiC domain-containing histone demethylases[J]. ACS Chem Biol, 2019, 14 (8): 1737- 1750
doi: 10.1021/acschembio.9b00289
[76]   CAO L L , LIU H , YUE Z et al. Iron chelation inhibits cancer cell growth and modulates global histone methylation status in colorectal cancer[J]. Biometals, 2018, 31 (5): 797- 805
doi: 10.1007/s10534-018-0123-5
[77]   JIANG Y , LI C , WU Q et al. Iron-dependent histone 3 lysine 9 demethylation controls B cell proliferation and humoral immune responses[J]. Nat Commun, 2019, 10 (1): 2935
doi: 10.1038/s41467-019-11002-5
[78]   HEO I , KIM V N . Regulating the regulators:posttranslational modifications of RNA silencing factors[J]. Cell, 2009, 139 (1): 28- 31
doi: 10.1016/j.cell.2009.09.013
[79]   BARTEL D P . MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116 (2): 281- 297
doi: 10.1016/s0092-8674(04)00045-5
[80]   CARTHEW R W , SONTHEIMER E J . Origins and mechanisms of miRNAs and siRNAs[J]. Cell, 2009, 136 (4): 642- 655
doi: 10.1016/j.cell.2009.01.035
[81]   ANDOLFO I , DE FALCO L , ASCI R et al. Regulation of divalent metal transporter 1(DMT1) non-IRE isoform by the microRNA Let-7d in erythroid cells[J]. Haematologica, 2010, 95 (8): 1244- 1252
doi: 10.3324/haematol.2009.020685
[82]   JIANG S , GUO S , LI H et al. Identification and functional verification of microRNA-16 family targeting intestinal divalent metal transporter 1(DMT1) in vitro and in vivo[J]. Front Physiol, 2019, 10:819
doi: 10.3389/fphys.2019.00819
[83]   BABU K R , MUCKENTHALER M U . miR-20a regulates expression of the iron exporter ferroportin in lung cancer[J]. J Mol Med (Berl), 2016, 94 (3): 347- 359
doi: 10.1007/s00109-015-1362-3
[84]   JIANG S , FANG X , LIU M et al. MiR-20b down-regulates intestinal ferroportin expression in vitro and in vivo[J]. Cells, 2019, 8 (10):
doi: 10.3390/cells8101135
[85]   SANGOKOYA C , DOSS J F , CHI J T . Iron-responsive miR-485-3p regulates cellular iron homeostasis by targeting ferroportin[J]. PLoS Genet, 2013, 9 (4): e1003408
doi: 10.1371/journal.pgen.1003408
[86]   YOSHIOKA Y , KOSAKA N , OCHIYA T et al. Micromanaging iron homeostasis:hypoxia-inducible micro-RNA-210 suppresses iron homeostasis-related proteins[J]. J Biol Chem, 2012, 287 (41): 34110- 34119
doi: 10.1074/jbc.M112.356717
[87]   SCHAAR D G , MEDINA D J , MOORE D F et al. miR-320 targets transferrin receptor 1(CD71) and inhibits cell proliferation[J]. Exp Hematol, 2009, 37 (2): 245- 255
doi: 10.1016/j.exphem.2008.10.002
[88]   KINDRAT I , TRYNDYAK V , DE CONTI A et al. MicroRNA-152-mediated dysregulation of hepatic transferrin receptor 1 in liver carcinogenesis[J]. Oncotarget, 2016, 7 (2): 1276- 1287
doi: 10.18632/oncotarget.6004
[89]   BABU K R , MUCKENTHALER M U . miR-148a regulates expression of the transferrin receptor 1 in hepatocellular carcinoma[J]. Sci Rep, 2019, 9 (1): 1518
doi: 10.1038/s41598-018-35947-7
[90]   MIYAZAWA M , BOGDAN A R , HASHIMOTO K et al. Regulation of transferrin receptor-1 mRNA by the interplay between IRE-binding proteins and miR-7/miR-141 in the 3'-IRE stem-loops[J]. RNA, 2018, 24 (4): 468- 479
doi: 10.1261/rna.063941.117
[91]   CHAN S Y , ZHANG Y Y , HEMANN C et al. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2[J]. Cell Metab, 2009, 10 (4): 273- 284
doi: 10.1016/j.cmet.2009.08.015
[92]   ASCI R , VALLEFUOCO F , ANDOLFO I et al. Trasferrin receptor 2 gene regulation by microRNA 221 in SH-SY5Y cells treated with MPP(+) as Parkinson's disease cellular model[J]. Neurosci Res, 2013, 77 (3): 121- 127
doi: 10.1016/j.neures.2013.09.003
[93]   SRINOUN K , SATHIRAPONGSASUTI N , PAIBOONSUKWONG K et al. miR-144 regulates oxidative stress tolerance of thalassemic erythroid cell via targeting NRF2[J]. Ann Hematol, 2019, 98 (9): 2045- 2052
doi: 10.1007/s00277-019-03737-4
[94]   SHPYLEVA S I , TRYNDYAK V P , KOVALCHUK O et al. Role of ferritin alterations in human breast cancer cells[J]. Breast Cancer Res Treat, 2011, 126 (1): 63- 71
doi: 10.1007/s10549-010-0849-4
[95]   RIPA R , DOLFI L , TERRIGNO M et al. MicroRNA miR-29 controls a compensatory response to limit neuronal iron accumulation during adult life and aging[J]. BMC Biol, 2017, 15 (1): 9
doi: 10.1186/s12915-017-0354-x
[96]   ZUMBRENNEN-BULLOUGH K B , WU Q , CORE A B et al. MicroRNA-130a is up-regulated in mouse liver by iron deficiency and targets the bone morphogenetic protein (BMP) receptor ALK2 to attenuate BMP signaling and hepcidin transcription[J]. J Biol Chem, 2014, 289 (34): 23796- 23808
doi: 10.1074/jbc.M114.577387
[97]   CASTOLDI M , VUJIC SPASIC M , ALTAMURA S et al. The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice[J]. J Clin Invest, 2011, 121 (4): 1386- 1396
doi: 10.1172/JCI44883
[98]   LI Y , LIU S , SUN H et al. MiR-218 inhibits erythroid differentiation and alters iron metabolism by targeting ALAS2 in K562 cells[J]. Int J Mol Sci, 2015, 16 (12): 28156- 28168
doi: 10.3390/ijms161226088
[99]   AZZOUZI I , MOEST H , WINKLER J et al. MicroRNA-96 directly inhibits gamma-globin expression in human erythropoiesis[J]. PLoS One, 2011, 6 (7): e22838
doi: 10.1371/journal.pone.0022838
[100]   HOU W , TIAN Q , STEUERWALD N M et al. The let-7 microRNA enhances heme oxygenase-1 by suppressing Bach1 and attenuates oxidant injury in human hepatocytes[J]. Biochim Biophys Acta, 2012, 1819 (11-12): 1113- 1122
doi: 10.1016/j.bbagrm.2012.06.001
[101]   HOU W , TIAN Q , ZHENG J et al. MicroRNA-196 represses Bach1 protein and hepatitis C virus gene expression in human hepatoma cells expressing hepatitis C viral proteins[J]. Hepatology, 2010, 51 (5): 1494- 1504
doi: 10.1002/hep.23401
[102]   XING Y , LI J , LI S P et al. MiR-27a-5p regulates apoptosis of liver ischemia-reperfusion injury in mice by targeting Bach1[J]. J Cell Biochem, 2018, 119 (12): 10376- 10383
doi: 10.1002/jcb.27383
[103]   LIAO Y , DU X , L?NNERDAL B . miR-214 regulates lactoferrin expression and pro-apoptotic function in mammary epithelial cells[J]. J Nutr, 2010, 140 (9): 1552- 1556
doi: 10.3945/jn.110.124289
[104]   LIAO Y , L?NNERDAL B . miR-584 mediates post-transcriptional expression of lactoferrin receptor in Caco-2 cells and in mouse small intestine during the perinatal period[J]. Int J Biochem Cell Biol, 2010, 42 (8): 1363- 1369
doi: 10.1016/j.biocel.2009.07.019
[105]   GATTER K C , BROWN G , TROWBRIDGE I S et al. Transferrin receptors in human tissues:their distribution and possible clinical relevance[J]. J Clin Pathol, 1983, 36 (5): 539- 545
doi: 10.1136/jcp.36.5.539
[106]   WU K J , POLACK A , DALLA-FAVERA R . Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-MYC[J]. Science, 1999, 283 (5402): 676- 679
doi: 10.1126/science.283.5402.676
[107]   ZHANG F , WANG W , TSUJI Y et al. Post-transcriptional modulation of iron homeostasis during p53-dependent growth arrest[J]. J Biol Chem, 2008, 283 (49): 33911- 33918
doi: 10.1074/jbc.M806432200
[108]   BAUMGART M , GROTH M , PRIEBE S et al. Age-dependent regulation of tumor-related microRNAs in the brain of the annual fish Nothobranchius furzeri[J]. Mech Ageing Dev, 2012, 133 (5): 226- 233
doi: 10.1016/j.mad.2012.03.015
[109]   UGALDE A P , RAMSAY A J , DE LA ROSA J et al. Aging and chronic DNA damage response activate a regulatory pathway involving miR-29 and p53[J]. EMBO J, 2011, 30 (11): 2219- 2232
doi: 10.1038/emboj.2011.124
[110]   SOMEL M , GUO S , FU N et al. MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain[J]. Genome Res, 2010, 20 (9): 1207- 1218
doi: 10.1101/gr.106849.110
[111]   LAGOS-QUINTANA M , RAUHUT R , YALCIN A et al. Identification of tissue-specific microRNAs from mouse[J]. Curr Biol, 2002, 12 (9): 735- 739
doi: 10.1016/s0960-9822(02)00809-6
[112]   LANDGRAF P , RUSU M , SHERIDAN R et al. A mammalian microRNA expression atlas based on small RNA library sequencing[J]. Cell, 2007, 129 (7): 1401- 1414
doi: 10.1016/j.cell.2007.04.040
[113]   HENTZE M W , MUCKENTHALER M U , GALY B et al. Two to tango:regulation of Mammalian iron metabolism[J]. Cell, 2010, 142 (1): 24- 38
doi: 10.1016/j.cell.2010.06.028
[114]   LISTOWSKI M A , HEGER E , BOGUS?AWSKA D M et al. microRNAs:fine tuning of erythropoiesis[J]. Cell Mol Biol Lett, 2013, 18 (1): 34- 46
doi: 10.2478/s11658-012-0038-z
[115]   JONES P A , BAYLIN S B . The epigenomics of cancer[J]. Cell, 2007, 128 (4): 683- 692
doi: 10.1016/j.cell.2007.01.029
[1] ZHAO Weixia,ZOU Wei. Intrinsic and extrinsic mechanisms regulating neuronal dendrite morphogenesis[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 90-99.
[2] WANG Yi,LU Yunbi. Poly adenosine diphosphate-ribosylation and neurodegenerative diseases[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 100-106.
[3] CHEN Junyi,YANG Xiang,FANG Xuexian,WANG Fudi,MIN Junxia. The role of ferroptosis in chronic diseases[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 44-57.
[4] YU Qing, XIONG Xiufang, SUN Yi. Targeting Cullin-RING E3 ligases for anti-cancer therapy: efforts on drug discovery[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 1-19.
[5] LI Ai,ZHANG Tianyuan,GAO Jianqing. Progress on utilizing mesenchymal stem cells as cellular delivery system for targeting delivery of as drug/gene for anti-tumor therapy[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 20-34.
[6] HUANG Yaoping,YANG Feng,ZHOU Tianhua,XIE Shanshan. Emerging roles of Hippo signaling pathway in gastrointestinal cancers and its molecular mechanisms[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 35-43.
[7] ZHONG Wen,LOU Yan,QIU Chenyang,LI Donglin,ZHANG Hongkun. Antithrombotic therapy after iliac vein stenting[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 131-136.
[8] XU Yiming,YING Kejing. Research progress on neutrophil extracellular traps in tumor[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 107-112.
[9] LIU Xiaoxiao,GUO Liqiong,LIANG Cheng. Research progress on electroencephalogram characteristics of anti-N-methyl-D-aspartate receptor encephalitis[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 118-123.
[10] FANG Juan,PAN Zhicheng,GUO Xiaogang. Research advance of ANRIL on atherosclerosis by regulating cell proliferation and apoptosis[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 113-117.
[11] WANG Shiying,GU Xinhua. Progress on clinical application of orthodontic-implant combined therapy[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 124-130.
[12] WANG Yifeng, WANG Zhiping. Research progress on intrinsic signaling pathways in axon regeneration[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 82-89.
[13] DING Yidan,LI Wenbin,WANG Rong,ZHANG Jianchun. Research progress on the effects of plateau hypoxia on blood-brain barrier structure and drug permeability[J]. J Zhejiang Univ (Med Sci), 2019, 48(6): 668-673.
[14] HU Linlin,ZHANG Ruiting,WANG Shuyue,HONG Hui,HUANG Peiyu,ZHANG Minming. Correlation of cardiovascular risk factors with brain iron deposition: A magnetic resonance imaging study[J]. J Zhejiang Univ (Med Sci), 2019, 48(6): 644-650.
[15] LI Xue,LI Wenbin,FENG Shilan,WANG Rong. Research progress on mechanism in adaptation of hemoglobin to plateau hypoxia[J]. J Zhejiang Univ (Med Sci), 2019, 48(6): 674-681.