Please wait a minute...
J Zhejiang Univ (Med Sci)  2020, Vol. 49 Issue (1): 35-43    DOI: 10.3785/j.issn.1008-9292.2020.02.23
    
Emerging roles of Hippo signaling pathway in gastrointestinal cancers and its molecular mechanisms
HUANG Yaoping1(),YANG Feng1,ZHOU Tianhua1,*(),XIE Shanshan1,2,*()
1. Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
2. The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
Download: HTML( 12 )   PDF(3612KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Hippo signaling pathway is highly conservative in evolution. MST1/2, LATS1/2, and the effector protein YAP/TAZ are the core members of this signaling pathway in mammalian cells. There have been many studies on YAP/TAZ and its downstream, however, the upstream regulatory factors of the Hippo signaling pathway remain unclear, and become one of the hot research directions of this pathway at present. In addition, Hippo signaling pathway can cross-talk with other signaling pathways such as Wnt and Notch signaling pathways, and plays an important role in controlling organ size, maintaining tissue homeostasis, and promoting tissue repair and regeneration. Abnormal Hippo signaling pathway may lead to the occurrence of a variety of tumors, especially gastrointestinal cancers such as liver cancer, colorectal cancer and gastric cancer. The abnormal expression of its members in gastrointestinal cancers is related to cancer cell proliferation, apoptosis, invasion and migration. Hippo signaling pathway is vital for liver repair and regeneration. Its inactivation will lead to the occurrence of primary liver cancer. The mechanism of YAP in liver cancer mainly depends on TEAD-mediated gene transcription. Hippo signaling pathway is also important for maintaining intestinal homeostasis, and its imbalance can lead to the occurrence and recurrence of colorectal cancer. In primary and metastatic gastric cancer, the expression of YAP/TAZ is significantly up-regulated, but the specific molecular mechanism is unclear. This article summarizes the recent progress on Hippo signaling pathway and its upstream regulatory factors, its roles in the development of gastrointestinal cancers and related molecular mechanisms; and also discusses the future research directions of Hippo signaling pathway.



Key wordsDigestive system neoplasms      Signal transduction      Hippo signaling pathway      Wnt signaling pathway      Receptors, Notch      Review     
Received: 16 December 2019      Published: 08 June 2020
CLC:  R735  
Corresponding Authors: ZHOU Tianhua,XIE Shanshan     E-mail: 15700084245@163.com;tzhou@zju.edu.cn;sxie@zju.edu.cn
Cite this article:

HUANG Yaoping,YANG Feng,ZHOU Tianhua,XIE Shanshan. Emerging roles of Hippo signaling pathway in gastrointestinal cancers and its molecular mechanisms. J Zhejiang Univ (Med Sci), 2020, 49(1): 35-43.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2020.02.23     OR     http://www.zjujournals.com/med/Y2020/V49/I1/35


Hippo信号通路及其在消化系统肿瘤中的作用研究进展

Hippo信号通路在进化上高度保守,哺乳动物细胞中该信号通路的核心成员包括MST1/2激酶、LATS1/2激酶和效应蛋白YAP/TAZ。虽然YAP/TAZ及其下游相关研究相对较多,但Hippo信号通路的上游调控因子并不明确,是目前该通路研究的热点方向之一。另外,Hippo信号通路可与Wnt和Notch等其他信号通路发生交叉对话,并在控制器官大小、维持组织稳态、促进组织修复再生等过程中扮演重要角色。Hippo信号通路异常可能会导致多种肿瘤的发生,尤其是肝癌、结直肠癌和胃癌等消化系统肿瘤,其成员在消化系统肿瘤中的异常表达与肿瘤细胞的增殖、凋亡、侵袭和迁移等过程密切相关。Hippo信号通路对肝脏的修复再生至关重要,其失活会导致原发性肝癌的发生,YAP在肝癌中的促肿瘤作用机制主要依赖于TEAD介导的基因转录。Hippo信号通路对于维持肠道稳态也很重要,其失调会导致结直肠癌的发生及复发。在原发性和转移性胃癌中,YAP/TAZ的表达显著上调,但具体分子调控机制并不清楚。本文总结了近年来Hippo信号通路的发现、上游调控因子及其在消化系统肿瘤发生发展过程中的作用和分子调控机制,并对未来的研究方向进行初步探讨。


关键词: 消化系统肿瘤,  信号传导,  Hippo信号通路,  Wnt信号通路,  受体, Notch,  综述 
Fig 1 Key proteins of Hippo signaling pathway in drosophila and mammals
Fig 2 Upstream regulators of Hippo signaling pathway in mammals
Fig 3 Crosstalks between Hippo pathway and Wnt or Notch pathways in mammals
[1]   YU F X , MENG Z , PLOUFFE S W et al. Hippo pathway regulation of gastrointestinal tissues[J]. Annu Rev Physiol, 2015, 77:201- 227
doi: 10.1146/annurev-physiol-021014-071733
[2]   JUSTICE R W , ZILIAN O , WOODS D F et al. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation[J]. Genes Dev, 1995, 9 (5): 534- 546
doi: 10.1101/gad.9.5.534
[3]   TAPON N , HARVEY K F , BELL D W et al. Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines[J]. Cell, 2002, 110 (4): 467- 478
doi: 10.1016/s0092-8674(02)00824-3
[4]   HAY B A , GUO M . Coupling cell growth, proliferation, and death. Hippo weighs in[J]. Dev Cell, 2003, 5 (3): 361- 363
doi: 10.1016/s1534-5807(03)00270-3
[5]   CHAI Y , XIANG K , WU Y et al. Cucurbitacin B inhibits the hippo-YAP signaling pathway and exerts anticancer activity in colorectal cancer cells[J]. Med Sci Monit, 2018, 24:9251- 9258
doi: 10.12659/MSM.911594
[6]   KANG W , CHENG A S , YU J et al. Emerging role of Hippo pathway in gastric and other gastrointestinal cancers[J]. World J Gastroenterol, 2016, 22 (3): 1279- 1288
doi: 10.3748/wjg.v22.i3.1279
[7]   SHIMOMURA T , MIYAMURA N , HATA S et al. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity[J]. Biochem Biophys Res Commun, 2014, 443 (3): 917- 923
doi: 10.1016/j.bbrc.2013.12.100
[8]   YU J , ZHENG Y , DONG J et al. Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded[J]. Dev Cell, 2010, 18 (2): 288- 299
doi: 10.1016/j.devcel.2009.12.012
[9]   MA L , CUI J , XI H et al. Fat4 suppression induces Yap translocation accounting for the promoted proliferation and migration of gastric cancer cells[J]. Cancer Biol Ther, 2016, 17 (1): 36- 47
doi: 10.1080/15384047.2015.1108488
[10]   SHARMA P , MCNEILL H . Fat and Dachsous cadherins[J]. Prog Mol Biol Transl Sci, 2013, 116:215- 235
doi: 10.1016/B978-0-12-394311-8.00010-8
[11]   AVRUCH J , ZHOU D , FITAMANT J et al. Protein kinases of the Hippo pathway:regulation and substrates[J]. Semin Cell Dev Biol, 2012, 23 (7): 770- 784
doi: 10.1016/j.semcdb.2012.07.002
[12]   LUO J , YU F X . GPCR-Hippo signaling in cancer[J]. Cells, 2019, 8 (5):
doi: 10.3390/cells8050426
[13]   PAN D . The Hippo signaling pathway in development and cancer[J]. Dev Cell, 2010, 19 (4): 491- 505
doi: 10.1016/j.devcel.2010.09.011
[14]   MA B , CHEN Y , CHEN L et al. Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase[J]. Nat Cell Biol, 2015, 17 (1): 95- 103
doi: 10.1038/ncb3073
[15]   WANG W , XIAO Z D , LI X et al. AMPK modulates Hippo pathway activity to regulate energy homeostasis[J]. Nat Cell Biol, 2015, 17 (4): 490- 499
doi: 10.1038/ncb3113
[16]   GALAN J A , AVRUCH J . MST1/MST2 protein kinases:regulation and physiologic roles[J]. Biochemistry, 2016, 55 (39): 5507- 5519
doi: 10.1021/acs.biochem.6b00763
[17]   WIERZBICKI P M , RYBARCZY A . The Hippo pathway in colorectal cancer[J]. Folia Histochem Cytobiol, 2015, 53 (2): 105- 119
doi: 10.5603/FHC.a2015.0015
[18]   TSCHAHARGANEH D F , CHEN X , LATZKO P et al. Yes-associated protein up-regulates Jagged-1 and activates the Notch pathway in human hepatocellular carcinoma[J]. Gastroenterology, 2013, 144:1530- 1542
doi: 10.1053/j.gastro.2013.02.009
[19]   YIMLAMAI D , CHRISTODOULOU C , GALLI G G et al. Hippo pathway activity influences liver cell fate[J]. Cell, 2014, 157 (6): 1324- 1338
doi: 10.1016/j.cell.2014.03.060
[20]   ZHOU D , CONRAD C , XIA F et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene[J]. Cancer Cell, 2009, 16 (5): 425- 438
doi: 10.1016/j.ccr.2009.09.026
[21]   LOFORESE G , MALINKA T , KEOGH A et al. Impaired liver regeneration in aged mice can be rescued by silencing Hippo core kinases MST1 and MST2[J]. EMBO Mol Med, 2017, 9 (1): 46- 60
doi: 10.15252/emmm.201506089
[22]   HONG L , CAI Y , JIANG M et al. The Hippo signaling pathway in liver regeneration and tumorigenesis[J]. Acta Biochim Biophys Sin (Shanghai), 2015, 47:46- 52
doi: 10.1093/abbs/gmu106
[23]   ZENDER L , SPECTOR M S , XUE W et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach[J]. Cell, 2006, 125 (7): 1253- 1267
doi: 10.1016/j.cell.2006.05.030
[24]   ZHANG L , SONG X , LI X et al. Yes-associated protein 1 as a novel prognostic biomarker for gastrointestinal cancer:a meta-analysis[J]. Biomed Res Int, 2018, 2018:4039173
doi: 10.1155/2018/4039173
[25]   JIAO S , LI C , HAO Q et al. VGLL4 targets a TCF4-TEAD4 complex to coregulate Wnt and Hippo signalling in colorectal cancer[J]. Nat Commun, 2017, 8:14058
doi: 10.1038/ncomms14058
[26]   SHEN S , GUO X , YAN H et al. A miR-130a-YAP positive feedback loop promotes organ size and tumorigenesis[J]. Cell Res, 2015, 25 (9): 997- 1012
doi: 10.1038/cr.2015.98
[27]   ZHANG S , CHEN Q , LIU Q et al. Hippo signaling suppresses cell ploidy and tumorigenesis through Skp2[J]. Cancer Cell, 2017, 31 (5): 669- 684
doi: 10.1016/j.ccell.2017.04.004
[28]   HONG A W , MENG Z , GUAN K L . The Hippo pathway in intestinal regeneration and disease[J]. Nat Rev Gastroenterol Hepatol, 2016, 13 (6): 324- 337
doi: 10.1038/nrgastro.2016.59
[29]   ZHOU D , ZHANG Y , WU H et al. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance[J]. Proc Natl Acad Sci U S A, 2011, 108 (49): E1312- 1320
doi: 10.1073/pnas.1110428108
[30]   DEHGHANIAN F , HOJATI Z , HOSSEINKHAN N et al. Reconstruction of the genome-scale co-expression network for the Hippo signaling pathway in colorectal cancer[J]. Comput Biol Med, 2018, 99:76- 84
doi: 10.1016/j.compbiomed.2018.05.023
[31]   LIANG K , ZHOU G , ZHANG Q et al. Expression of hippo pathway in colorectal cancer[J]. Saudi J Gastroenterol, 2014, 20 (3): 188- 194
doi: 10.4103/1319-3767.133025
[32]   YUEN H F , MCCRUDDEN C M , HUANG Y H et al. TAZ expression as a prognostic indicator in colorectal cancer[J]. PLoS One, 2013, 8 (1): e54211
doi: 10.1371/journal.pone.0054211
[33]   SONG R , GU D , ZHANG L et al. Functional significance of Hippo/YAP signaling for drug resistance in colorectal cancer[J]. Mol Carcinog, 2018, 57 (11): 1608- 1615
doi: 10.1002/mc.22883
[34]   LIU B S , XIA H W , ZHOU S et al. Inhibition of YAP reverses primary resistance to EGFR inhibitors in colorectal cancer cells[J]. Oncol Rep, 2018, 40 (4): 2171- 2182
doi: 10.3892/or.2018.6630
[35]   WIERZBICKI P M , ADRYCH K , KARTANOWICZ D et al. Underexpression of LATS1 TSG in colorectal cancer is associated with promoter hypermethylation[J]. World J Gastroenterol, 2013, 19 (27): 4363- 4373
doi: 10.3748/wjg.v19.i27.4363
[36]   MCKEY J , MARTIRE D , DE SANTA BARBARA P et al. LIX1 regulates YAP1 activity and controls the proliferation and differentiation of stomach mesenchymal progenitors[J]. BMC Biol, 2016, 14:34
doi: 10.1186/s12915-016-0257-2
[37]   YU M , CUI R , HUANG Y et al. Increased proton-sensing receptor GPR4 signalling promotes colorectal cancer progression by activating the hippo pathway[J]. EBioMedicine, 2019, 48:264- 276
doi: 10.1016/j.ebiom.2019.09.016
[38]   YAO H , ASHIHARA E , MAEKAWA T . Targeting the Wnt/beta-catenin signaling pathway in human cancers[J]. Expert Opin Ther Targets, 2011, 15 (7): 873- 887
doi: 10.1517/14728222.2011.577418
[39]   CHOI W , KIM J , PARK J et al. YAP/TAZ initiates gastric tumorigenesis via upregulation of MYC[J]. Cancer Res, 2018, 78 (12): 3306- 3320
doi: 10.1158/0008-5472.CAN-17-3487
[40]   LI L , ZHAO J , HUANG S et al. MiR-93-5p promotes gastric cancer-cell progression via inactivation of the Hippo signaling pathway[J]. Gene, 2018, 641:240- 247
doi: 10.1016/j.gene.2017.09.071
[41]   YAN H , QIU C , SUN W et al. Yap regulates gastric cancer survival and migration via SIRT1/Mfn2/mitophagy[J]. Oncol Rep, 2018, 39 (4):
[42]   JIAO S , GUAN J , CHEN M et al. Targeting IRF3 as a YAP agonist therapy against gastric cancer[J]. J Exp Med, 2018, 215 (2): 699- 718
doi: 10.1084/jem.20171116
[1] ZHU Huiqi,YING Kejing. Tissue factors and venous thromboembolism in cancer patients[J]. J Zhejiang Univ (Med Sci), 2020, 49(6): 772-778.
[2] LIN Cuicui,CHEN Zhengyun,WANG Chunyan,XI Yongmei. Research progress on biomarkers for endometriosis based on lipidomics[J]. J Zhejiang Univ (Med Sci), 2020, 49(6): 779-784.
[3] LI Mengyao,LIU Pan,KE Yuehai,ZHANG Xue. Research progress on macrophage in radiation induced lung injury[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 623-628.
[4] HAN Xue,JIANG Guojun,SHI Qiaojuan. Effects of antihyperglycemics on endothelial progenitor cells[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 629-636.
[5] DUAN Runping,XU Yesheng,ZHENG Libin,YAO Yufeng. Research progress on etiologic diagnosis of ocular viral diseases[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 644-650.
[6] WU Wei,XU Jian. Research progress on the role of pentraxin 3 in polycystic ovary syndrome[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 637-643.
[7] XU Qinglin,LOU Guodong,WANG Tiantian,ZHANG Lisan. Advances in treatment of narcolepsy[J]. J Zhejiang Univ (Med Sci), 2020, 49(4): 419-424.
[8] JIANG Peiran,WANG Zhiping. Progress on axon regeneration in model organisms[J]. J Zhejiang Univ (Med Sci), 2020, 49(4): 500-507.
[9] CHEN Junyi,YANG Xiang,FANG Xuexian,WANG Fudi,MIN Junxia. The role of ferroptosis in chronic diseases[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 44-57.
[10] YU Qing, XIONG Xiufang, SUN Yi. Targeting Cullin-RING E3 ligases for anti-cancer therapy: efforts on drug discovery[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 1-19.
[11] DUAN Lingyan,YIN Xiangju,MENG Hong'en,FANG Xuexian,MIN Junxia,WANG Fudi. Progress on epigenetic regulation of iron homeostasis[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 58-70.
[12] LI Ai,ZHANG Tianyuan,GAO Jianqing. Progress on utilizing mesenchymal stem cells as cellular delivery system for targeting delivery of as drug/gene for anti-tumor therapy[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 20-34.
[13] ZHONG Wen,LOU Yan,QIU Chenyang,LI Donglin,ZHANG Hongkun. Antithrombotic therapy after iliac vein stenting[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 131-136.
[14] XU Yiming,YING Kejing. Research progress on neutrophil extracellular traps in tumor[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 107-112.
[15] LIU Xiaoxiao,GUO Liqiong,LIANG Cheng. Research progress on electroencephalogram characteristics of anti-N-methyl-D-aspartate receptor encephalitis[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 118-123.