Please wait a minute...
J Zhejiang Univ (Med Sci)  2019, Vol. 48 Issue (4): 390-396    DOI: 10.3785/j.issn.1008-9292.2019.08.07
Genetic analysis of newborns with abnormal metabolism of 3-hydroxyisovalerylcarnitine
WU Dingwen1(),LU Bin2,YANG Jianbin1,YANG Rulai1,HUANG Xinwen1,TONG Fan1,ZHENG Jing1,ZHAO Zhengyan1,*()
1. Zhejiang Neonatal Screening Center, Department of Genetics and Metabolism, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
2. Zhejiang Biosan Biochemical Technologies Co. Ltd, Hangzhou 310012, China
Download: HTML( 14 )   PDF(977KB)
Export: BibTeX | EndNote (RIS)      


Objective: To investigate the genetic characterization of 3-hydroxyisovalerylcarnitine (C5-OH) metabolic abnormality in neonates. Methods: Fifty two newborns with increased C5-OH, C5-OH/C3 and C5-OH/C8 detected by tandem mass spectrometry during neonatal screening were enrolled in the study. Genomic DNA was extracted from the whole blood samples of 52 cases and their parents. Seventy-nine genes associated with genetic and metabolic diseases including MCCC1, MCCC2 were targeted by liquid capture technique. Variation information of these genes was examined by high-throughput sequencing and bioinformatic analysis, and then was classified based on the American College of Medical Genetics and Genomics (ACMG) standards and guidelines. The genetic types were classified as wild-type, MCCC1-maternal-mutation, MCCC1-paternal-mutation and MCCC2-mutation. Wilcoxon rank-sum test was performed for the increased multiples of C5-OH calculated in neonatal screening. Results: Twenty one MCCC1 variants (14 novel) were identified in 37 cases, 6 MCCC2 variants (5 novel) in 4 cases. The increased multiple of C5-OH calculated in MCCC1-maternal-mutation and MCCC2-mutation groups were significantly higher than that in wild-type group (all P < 0.05), while there was no significant difference between MCCC1-paternal-mutation group and wild-type group (P>0.05). Conclusion: Mutations on MCCC1 and MCCC2 genes are the major genetic causes for the increased C5-OH in neonates, and maternal single heterozygous mutation can contribute to the moderately to severely increased C5-OH.

Key wordsMetabolism, inborn errors/blood      Organic acids/blood      Acyl coenzyme A/deficiency      Genes/genetics      Mass spectrometry      Neonatal screening     
Received: 05 March 2019      Published: 30 October 2019
CLC:  R722.11  
Corresponding Authors: ZHAO Zhengyan     E-mail:;
Cite this article:

WU Dingwen,LU Bin,YANG Jianbin,YANG Rulai,HUANG Xinwen,TONG Fan,ZHENG Jing,ZHAO Zhengyan. Genetic analysis of newborns with abnormal metabolism of 3-hydroxyisovalerylcarnitine. J Zhejiang Univ (Med Sci), 2019, 48(4): 390-396.

URL:     OR


目的: 探讨新生儿3-羟基异戊酰基肉碱(C5-OH)代谢异常的遗传学原因。方法: 收集2018年1月至12月在浙江省新生儿遗传代谢病筛查中心经串联质谱法筛查结果为C5-OH增高的52例新生儿的资料,包括新生儿筛查与复查随访的C5-OH、C5-OH/C3、C5-OH/C8检测数据,并换算成C5-OH增高倍数。采用液相捕获技术靶向捕获MCCC1MCCC2等79个遗传代谢病相关基因,通过高通量测序和生物信息学分析获取基因的突变信息,参考美国医学遗传学与基因组学学会(ACMG)分类标准进行分级。依据基因检测情况,将C5-OH增高新生儿分为未检出突变组、MCCC1母源突变组、MCCC1父源突变组、MCCC2突变组,采用威尔科克森秩和检验分析不同组间C5-OH增高倍数的差异。结果: 37例检出MCCC1突变,涉及21种突变型,其中14种为新发现的突变型;4例检出MCCC2突变,涉及6种突变型,其中5种为新发现的突变型。MCCC1母源突变组、MCCC2突变组的C5-OH增高倍数均高于未检出突变组(均P < 0.05),MCCC1父源突变组的C5-OH增高倍数与未检出突变组差异无统计学意义(P>0.05)。结论: MCCC1MCCC2基因突变是导致新生儿血C5-OH增高的主要遗传学原因,其中母源性单杂合突变可导致中重度C5-OH增高。

关键词: 代谢缺陷, 先天性/血液,  有机酸类/血液,  酰基辅酶A/缺乏,  基因/遗传学,  质谱分析法,  新生儿筛查 
Fig 1 Distribution of MCCC1 mutation sites
基因 区域 碱基 氨基酸 ACMG分类 数据库 文献 人群频率# 检出次数
MCCC1 外显子1 c.57G > A p.W19* 致病 1
MCCC1 内含子2 c.137-3C > A 意义未明 1
MCCC1 外显子3 c.227_228delTG p.V76Gfs*3 致病 1
MCCC1 外显子4 c.313C > T p.Q105* 致病 4.06×10-6 1
MCCC1 外显子4 c.321C > A p.Y107* 致病 1
MCCC1 外显子5 c.440T > G p.I147S 意义未明 1
MCCC1 内含子6 c.639+2T > A 致病 致病 8.12×10-6 10
MCCC1 外显子7 c.641G > T p.G214V 意义未明 2
MCCC1 外显子8 c.820dupA p.R274Kfs*4 致病 1
MCCC1 外显子8 c.863A > G p.E288G 致病 意义未明 2.58×10-5 2
MCCC1 内含子8 c.874-1G > A 致病 2
MCCC1 外显子9 c.881T > G p.I294S 意义未明 1
MCCC1 内含子11 c.1267+2T > G 致病 1
MCCC1 外显子12 c.1304C > T p.A435V 意义未明 4.06×10-6 1
MCCC1 外显子12 c.1315G > A p.V439M 意义未明 意义未明 8.12×10-6 1
MCCC1 外显子12 c.1331G > A p.R444H 可能致病 致病 2.84×10-5 2
MCCC1 外显子14 c.1630delA p.R544Dfs*2 致病 1
MCCC1 外显子14 c.1679dupA p.N560Kfs*10 致病 致病 3
MCCC1 外显子15 c.1731G > C p.Q577H 意义未明 1
MCCC1 外显子16 c.1759G > T p.G587C 意义未明 4.07×10-6 1
MCCC1 外显子16 c.1797delA p.K599Nfs*13 致病 2
MCCC2 外显子2 c.130G > C p.E44Q 意义未明 1
MCCC2 外显子2 c.157_159dupGTA p.V53_N54insV 意义未明 1
MCCC2 内含子4 c.384-20A > G 意义未明 可能致病 4.06×10-5 1
MCCC2 外显子6 c.562C > T p.R188X* 可能致病 1.22×10-5 2
MCCC2 内含子8 c.804-10T > G 意义未明 1
MCCC2 外显子11 c.1061C > T p.T354I 意义未明 1
Tab 1 Mutations of MCCC1 and MCCC2
Fig 2 Distribution of C5-OH increased multiple in different neonatal groups
序号 C5-OH增高倍数 随访时间(月) 转归趋势 基因 突变位点 遗传来源 临床意见
初筛 随访 母亲
MCCC:甲基巴豆酰辅酶A羧化酶;3MCCD:3-甲基巴豆酰辅酶A羧化酶缺乏症; C5-OH:3-羟基异戊酰基肉碱.
1 24.14 1.01~21.60 169.64 10 逐步下降 MCCC1 c.440T > G 母亲 母源性3MCCD
2 13.98 0.92~7.53 119.13 6 逐步下降 MCCC1 c.639+2T > A 母亲 母源性3MCCD
3 15.19 1.25~10.66 166.43 6 逐步下降 MCCC1 c.639+2T > A 母亲 母源性3MCCD
4 18.20 2.15~19.92 189.20 2 逐步下降 MCCC1 c.1759G > T 母亲 母源性3MCCD
5 19.42 1.76~17.17 154.26 2 逐步下降 MCCC1 c.137-3C > A 母亲 母源性3MCCD
6 16.98 38.54~74.82 1.00 2 逐步下降 MCCC1 c.863A > G 母亲 原因不明,继续随访
7 19.65 63.61~99.87 2.65 11 持续增高 MCCC2 c.562C > T、c.1061C > T 母亲与父亲 原发性3MCCD
8 1.67 2.10~5.69 1.92 10 波动 MCCC2 c.384-20A > G、c.804-10T > G 母亲与父亲 原因不明,继续随访
9 5.41 4.5~5.85 1.66 2 维持 MCCC2 c.130G > C、c.157_159dupGTA 父亲与母亲 原因不明,继续随访
Tab 2 Cases of maternal 3-methylcrotonyl-coenzyme A carboxylase deficiency and abnormal 3-hydroxyisovalerylcarnitine levels during follow-up
[1]   KORMAN S H . Inborn errors of isoleucine degradation:a review[J]. Mol Genet Metab, 2006, 89 (4): 289- 299
doi: 10.1016/j.ymgme.2006.07.010
[2]   CATANZANO F , OMBRONE D , DI STEFANO C et al. The first case of mitochondrial acetoacetyl-CoA thiolase deficiency identified by expanded newborn metabolic screening in Italy:the importance of an integrated diagnostic approach[J]. J Inherit Metab Dis, 2010, 33 Suppl 3:S91- S94
[3]   RAMSAY J , MORTON J , NORRIS M et al. Organic acid disorders[J]. Ann Transl Med, 2018, 6 (24): 472
doi: 10.21037/atm.2018.12.39
[4]   KU C S , COOPER D N , POLYCHRONAKOS C et al. Exome sequencing:dual role as a discovery and diagnostic tool[J]. Ann Neurol, 2012, 71 (1): 5- 14
doi: 10.1002/ana.22647
[5]   RICHARDS S , AZIZ N , BALE S et al. Standards and guidelines for the interpretation of sequence variants:a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17 (5): 405- 424
doi: 10.1038/gim.2015.30
[6]   OMBRONE D , GIOCALIERE E , FORNI G et al. Expanded newborn screening by mass spectrometry:New tests, future perspectives[J]. Mass Spectrom Rev, 2016, 35 (1): 71- 84
doi: 10.1002/mas.21463
[7]   YUNUS Z M , RAHMAN S A , CHOYY S et al. Pilot study of newborn screening of inborn error of metabolism using tandem mass spectrometry in Malaysia:outcome and challenges[J]. J Pediatr Endocrinol Metab, 2016, 29 (9): 1031- 1039
[8]   黄新文, 杨建滨, 童凡 et al. 串联质谱技术对新生儿遗传代谢病的筛查及随访研究[J]. 中华儿科杂志, 2011, 49 (10): 765- 770
doi: 10.3760/cma.j.issn.0578-1310.2011.10.013
[9]   WOJCIK M H , WIERENGA K J , RODAN L H et al. Beta-ketothiolase deficiency presenting with metabolic stroke after a normal newborn screen in two individuals[J]. JIMD Rep, 2018, 39:45- 54
[10]   GRUNERT S C , SCHLATTER S M , SCHMITT R N et al. 3-Hydroxy-3-methylglutaryl-coenzyme A lyase deficiency:Clinical presentation and outcome in a series of 37 patients[J]. Mol Genet Metab, 2017, 121 (3): 206- 215
doi: 10.1016/j.ymgme.2017.05.014
[11]   BALASUBRAMANIAM S , LEWIS B , MOCK D M et al. Leigh-like syndrome due to homoplasmic m.8993T > G variant with hypocitrullinemia and unusual biochemical features suggestive of multiple carboxylase deficiency (MCD)[J]. JIMD Rep, 2017, 33:99- 107
[12]   YANG L , YANG J , ZHANG T et al. Identification of eight novel mutations and transcript analysis of two splicing mutations in Chinese newborns with MCC deficiency[J]. Clin Genet, 2015, 88 (5): 484- 488
doi: 10.1111/cge.12535
[1] TONG Fan,YANG Rulai,LIU Chang,WU Dingwen,ZHANG Ting,HUANG Xinwen,HONG Fang,QIAN Guling,HUANG Xiaolei,ZHOU Xuelian,SHU Qiang,ZHAO Zhengyan. Screening for hereditary tyrosinemia and genotype analysis in newborns[J]. J Zhejiang Univ (Med Sci), 2019, 48(4): 459-464.
[2] HUANG Shumin,ZHAO Zhengyan. Advances in newborn screening and immune system reconstitution of severe combined immunodeficiency[J]. J Zhejiang Univ (Med Sci), 2019, 48(4): 351-357.
[3] ZHU Min,WU Yunqiu,SHOU Zhangfei. Effects of Niaoduqing granule on urine metabolic profile in chronic renal failure rats[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 628-635.
[4] REN Xiaomei, XIN Bao, QIAN Wenwen, ZHANG Rongqiang. Effects of low salt diet on gene expression in dog's heart[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 433-438.
[5] LI Enshu, YE Xiaoqun, FANG Li, YE Yinghui. Effect of oxygen concentration on outcome of in-vitro fertilization-embryo transfer[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 290-294.
[6] ZHENG Jing, ZHANG Yu, HONG Fang, YANG Jianbin, TONG Fan, MAO Huaqing, HUANG Xiaolei, ZHOU Xuelian, YANG Rulai, ZHAO Zhengyan, HUANG Xinwen. Screening for fatty acid oxidation disorders of newborns in Zhejiang province:prevalence, outcome and follow-up[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 248-255.
[7] HONG Fang, HUANG Xinwen, ZHANG Yu, YANG Jianbin, TONG Fan, MAO Huaqing, HUANG Xiaolei, ZHOU Xuelian, YANG Rulai, ZHAO Zhengyan. Screening for newborn organic aciduria in Zhejiang province:prevalence, outcome and follow-up[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 240-247.
[8] ZHU Hui, MIAO Zhengyou, QIAN Yeqing, LI Hongge, JIN Jinglei, HE Jing, DONG Minyue. Detection of cell-free fetal DNA in maternal plasma for noninvasive prenatal screening of fetal chromosomal aneuploidies in women of advanced maternal age[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 256-261.
[9] HUANG Xinwen, ZHANG Yu, HONG Fang, ZHENG Jing, YANG Jianbin, TONG Fan, MAO Huaqing, HUANG Xiaolei, ZHOU Xuelian, YANG Rulai, ZHAO Zhengyan. Screening for amino acid metabolic disorders of newborns in Zhejiang province:prevalence, outcome and follow-up[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 233-239.
[10] MA Tingting,WANG Yi,CHEN Xiaoqian,ZHAO Xiaoping. LC/MS guided approach to discovering nephroprotective substances from Huangkui capsule[J]. J Zhejiang Univ (Med Sci), 2017, 46(1): 66-73.
[11] QIU Li-ping, SUN Wen-jun. Simultaneous quantitative analysis of different ceramide species in cells by high-performance liquid chromatography-tandem mass spectrometry[J]. J Zhejiang Univ (Med Sci), 2015, 44(4): 429-434.
[12] ZHANG Xiang-qun, WU Ling-hua,CHEN Fang-jun, ZHANG Yi, CHEN Lu. Quantitative determination of voglibose contents in its tablets with high-performance liquid chromatography-mass spectrometry[J]. J Zhejiang Univ (Med Sci), 2014, 43(2): 141-144.
[13] KONG Si-si, TU Mei-juan, YANG Xi, ZHAO Lei, ZHOU Hui, ZENG Su, JIANG Hui-di. In vitro interaction of deferiprone with cellular membrane transporters of hOCTs and hOAT1[J]. J Zhejiang Univ (Med Sci), 2014, 43(2): 129-134.
[14] . Screening and identifying hepatotoxic components in Aucklandiae Radix with GC-MS[J]. J Zhejiang Univ (Med Sci), 2012, 41(1): 43-46.
[15] . Identification of major components of traditional Chinese medicine Naodesheng tablet by HPLC-DAD-MSn[J]. J Zhejiang Univ (Med Sci), 2012, 41(1): 32-42.