Please wait a minute...
J Zhejiang Univ (Med Sci)  2019, Vol. 48 Issue (3): 310-317    DOI: 10.3785/j.issn.1008-9292.2019.06.12
    
The roles of habenula and related neural circuits in neuropsychiatric diseases
WU Yuxing(),ZHANG Shihong,CHEN Zhong*()
Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou 310058, China
Download: HTML( 22 )   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The habenula is a small and bilateral nucleus above dorsal thalamus, which contains several different types of neurons. The habenula has extensive connections with the forebrain, septum and monoaminergic nuclei in the midbrain and brainstem. Habenula is known as an 'anti-reward' nucleus, which can be activated by aversive stimulus and negative reward prediction errors. Accumulating researchs have implicated that the habenula is involved in several behaviors crucial to survival. Meanwhile, the roles of the habenula in neuropsychiatric diseases have received increasing attention. This review summaries the studies regarding the roles of habenula and the related circuits in neuropathic pain, depression, drug addiction and schizophrenia, and discusses the possibility to use the habenula as a treatment target.



Key wordsHabenula/physiology      Habenula/drug effects      Neurons/physiology      Neurons/drug effects      Pain      Depressive disorder/genetics      Substance-related disorders      Schizophrenia      Review     
Received: 25 January 2019      Published: 04 September 2019
CLC:  R74  
Corresponding Authors: CHEN Zhong     E-mail: wuyuxing@hrglobe.cn;chenzhong@zju.edu.cn
Cite this article:

WU Yuxing, ZHANG Shihong, CHEN Zhong. The roles of habenula and related neural circuits in neuropsychiatric diseases. J Zhejiang Univ (Med Sci), 2019, 48(3): 310-317.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2019.06.12     OR     http://www.zjujournals.com/med/Y2019/V48/I3/310


缰核及其神经环路在神经精神疾病中的作用研究进展

缰核是位于丘脑背侧的一个体积较小的双侧核团,含多种不同类型的神经元,与前额叶、隔核、中脑和脑干的单胺类核团有广泛的纤维联系。缰核是一个"反奖赏"核团,能被厌恶刺激和奖赏缺失激活,在多种对生存至关重要的行为中发挥作用。近年来,缰核在神经精神疾病中的作用越来越受到关注。本文综述了缰核在神经病理性疼痛、抑郁症、药物成瘾和精神分裂症中的作用及其环路机制,并讨论了缰核作为临床治疗靶点的可能性。


关键词: 缰核/生理学,  缰核/药物作用,  神经元/生理学,  神经元/药物作用,  疼痛,  抑郁症/遗传学,  物质相关性障碍,  精神分裂症,  综述 
Fig 1 Nerve fiber connections of the habenula
[1]   AIZAWA H , KOBAYASHI M , TANAKA S et al. Molecular characterization of the subnuclei in rat habenula[J]. J Comp Neurol, 2012, 520 (18): 4051- 4066
doi: 10.1002/cne.23167
[2]   PANDEY S , SHEKHAR K , REGEV A et al. Comprehensive identification and spatial mapping of habenular neuronal types using single-cell RNA-seq[J]. Curr Biol, 2018, 28 (7): 1052- 1065.e7
doi: 10.1016/j.cub.2018.02.040
[3]   YAMAGUCHI T , DANJO T , PASTAN I et al. Distinct roles of segregated transmission of the septo-habenular pathway in anxiety and fear[J]. Neuron, 2013, 78 (3): 537- 544
doi: 10.1016/j.neuron.2013.02.035
[4]   HERKENHAM M , NAUTA W J . Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber-of-passage problem[J]. J Comp Neurol, 1977, 173 (1): 123- 146
[5]   KIM U , CHANG S Y . Dendritic morphology, local circuitry, and intrinsic electrophysiology of neurons in the rat medial and lateral habenular nuclei of the epithalamus[J]. J Comp Neurol, 2005, 483 (2): 236- 250
[6]   GREATREX R M , PHILLIPSON O T . Demonstration of synaptic input from prefrontal cortex to the habenula i the rat[J]. Brain Res, 1982, 238 (1): 192- 197
doi: 10.1016/0006-8993(82)90782-X
[7]   BUIJS R M . Intra-and extrahypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord[J]. Cell Tissue Res, 1978, 192 (3): 423- 435
[8]   HATTAR S , KUMAR M , PARK A et al. Central projections of melanopsin-expressing retinal ganglion cells in the mouse[J]. J Comp Neurol, 2006, 497 (3): 326- 349
[9]   CRAIG A D . Distribution of trigeminothalamic and spinothalamic lamina I terminations in the cat[J]. Somatosens Mot Res, 2003, 20 (3-4): 209- 222
doi: 10.1080/08990220310001623013
[10]   KIM U . Topographic commissural and descending projections of the habenula in the rat[J]. J Comp Neurol, 2009, 513 (2): 173- 187
[11]   BAKER P M , JHOU T , LI B et al. The lateral habenula circuitry:reward processing and cognitive control[J]. J Neurosci, 2016, 36 (45): 11482- 11488
doi: 10.1523/JNEUROSCI.2350-16.2016
[12]   BENABID A L , JEAUGEY L . Cells of the rat lateral habenula respond to high-threshold somatosensory inputs[J]. Neurosci Lett, 1989, 96 (3): 289- 294
doi: 10.1016/0304-3940(89)90393-5
[13]   SHELTON L , PENDSE G , MALEKI N et al. Mapping pain activation and connectivity of the human habenula[J]. J Neurophysiol, 2012, 107 (10): 2633- 2648
doi: 10.1152/jn.00012.2012
[14]   KHALILZADEH E , SAIAH G V . The possible mechanisms of analgesia produced by microinjection of morphine into the lateral habenula in the acute model of trigeminal pain in rats[J]. Res Pharm Sci, 2017, 12 (3): 241- 248
doi: 10.4103/1735-5362.207205
[15]   MARGOLIS E B, FIELDS H L. Mu opioid receptor actions in the lateral habenula[J/OL]. PLoS One, 2016, 11(7): e0159097.
[16]   MA Q P , SHI Y S , HAN J S . Further studies on interactions between periaqueductal gray, nucleus accumbens and habenula in antinociception[J]. Brain Res, 1992, 583 (1-2): 292- 295
doi: 10.1016/S0006-8993(10)80036-8
[17]   PAULSON P E , GORMAN A L , YEZIERSKI R P et al. Differences in forebrain activation in two strains of rat at rest and after spinal cord injury[J]. Exp Neurol, 2005, 196 (2): 413- 421
doi: 10.1016/j.expneurol.2005.08.015
[18]   LI Y , WANG Y , XUAN C et al. Role of the lateral habenula in pain-associated depression[J]. Front Behav Neurosci, 2017, 11:31
[19]   OZAKI S , NARITA M , NARITA M et al. Suppression of the morphine-induced rewarding effect in the rat with neuropathic pain:implication of the reduction in mu-opioid receptor functions in the ventral tegmental area[J]. J Neurochem, 2002, 82 (5): 1192- 1198
[20]   BORSOOK D , LINNMAN C , FARIA V et al. Reward deficiency and anti-reward in pain chronification[J]. Neurosci Biobehav Rev, 2016, 68:282- 297
doi: 10.1016/j.neubiorev.2016.05.033
[21]   MAHIEUX G , BENABID A L . Naloxone-reversible analgesia induced by electrical stimulation of the habenula in the rat[J]. Brain Res, 1987, 406 (1-2): 118- 129
doi: 10.1016/0006-8993(87)90776-1
[22]   FU L B , WANG Y , SUN X X et al. Antinociceptive effects induced by intra-lateral habenula complex injection of the galanin receptor 1 agonist M617 in rats[J]. Exp Brain Res, 2016, 234 (2): 493- 497
doi: 10.1007/s00221-015-4480-9
[23]   PROULX C D , HIKOSAKA O , MALINOW R . Reward processing by the lateral habenula in normal and depressive behaviors[J]. Nat Neurosci, 2014, 17 (9): 1146- 1152
doi: 10.1038/nn.3779
[24]   YANG L M , HU B , XIA Y H et al. Lateral habenula lesions improve the behavioral response in depressed rats via increasing the serotonin level in dorsal raphe nucleus[J]. Behav Brain Res, 2008, 188 (1): 84- 90
doi: 10.1016/j.bbr.2007.10.022
[25]   LI B , PIRIZ J , MIRRIONE M et al. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression[J]. Nature, 2011, 470 (7335): 535- 539
doi: 10.1038/nature09742
[26]   XU C , SUN Y , CAI X et al. Medial habenula-interpeduncular nucleus circuit contributes to anhedonia-like behavior in a rat model of depression[J]. Front Behav Neurosci, 2018, 12:238
[27]   LAWSON R P , NORD C L , SEYMOUR B et al. Disrupted habenula function in major depression[J]. Mol Psychiatry, 2017, 22 (2): 202- 208
doi: 10.1038/mp.2016.81
[28]   LI K , ZHOU T , LIAO L et al. βCaMKⅡ in lateral habenula mediates core symptoms of depression[J]. Science, 2013, 341 (6149): 1016- 1020
doi: 10.1126/science.1240729
[29]   YANG Y , CUI Y , SANG K et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression[J]. Nature, 2018, 554 (7692): 317- 322
doi: 10.1038/nature25509
[30]   CUI Y , YANG Y , NI Z et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression[J]. Nature, 2018, 554 (7692): 323- 327
doi: 10.1038/nature25752
[31]   SHABEL S J , PROULX C D , PIRIZ J et al. Mood regulation. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment[J]. Science, 2014, 345 (6203): 1494- 1498
doi: 10.1126/science.1250469
[32]   SARTORIUS A, KIENING K L, KIRSCH P, et al. Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient[J/OL]. Biol Psychiatry, 2010, 67(2): e9-e11.
[33]   ZHANG C , LUEPTOW L M , ZHANG H T et al. The role of phosphodiesterase-2 in psychiatric and neurodegenerative disorders[J]. Adv Neurobiol, 2017, 17:307- 347
[34]   LVSCHER C , MALENKA R C . Drug-evoked synaptic plasticity in addiction:from molecular changes to circuit remodeling[J]. Neuron, 2011, 69 (4): 650- 663
doi: 10.1016/j.neuron.2011.01.017
[35]   ELLISON G . Neural degeneration following chronic stimulant abuse reveals a weak link in brain, fasciculus retroflexus, implying the loss of forebrain control circuitry[J]. Eur Neuropsychopharmacol, 2002, 12 (4): 287- 297
doi: 10.1016/S0924-977X(02)00020-2
[36]   MAROTEAUX M , MAMELI M . Cocaine evokes projection-specific synaptic plasticity of lateral habenula neurons[J]. J Neurosci, 2012, 32 (36): 12641- 12646
doi: 10.1523/JNEUROSCI.2405-12.2012
[37]   MEYE F J , SOIZA-REILLY M , SMIT T et al. Shifted pallidal co-release of GABA and glutamate in habenula drives cocaine withdrawal and relapse[J]. Nat Neurosci, 2016, 19 (8): 1019- 1024
doi: 10.1038/nn.4334
[38]   ZAPATA A , HWANG E K , LUPICA C R . Lateral habenula involvement in impulsive cocaine seeking[J]. Neuropsychopharmacology, 2017, 42 (5): 1103- 1112
doi: 10.1038/npp.2016.286
[39]   KANG S , LI J , BEKKER A et al. Rescue of glutamate transport in the lateral habenula alleviates depression-and anxiety-like behaviors in ethanol-withdrawn rats[J]. Neuropharmacology, 2018, 129:47- 56
doi: 10.1016/j.neuropharm.2017.11.013
[40]   KANG S , LI J , ZUO W et al. Ethanol withdrawal drives anxiety-related behaviors by reducing m-type potassium channel activity in the lateral habenula[J]. Neuropsychopharmacology, 2017, 42 (9): 1813- 1824
doi: 10.1038/npp.2017.68
[41]   SHEFFIELD E B , QUICK M W , LESTER R A . Nicotinic acetylcholine receptor subunit mRNA expression and channel function in medial habenula neurons[J]. Neuropharmacology, 2000, 39 (13): 2591- 2603
doi: 10.1016/S0028-3908(00)00138-6
[42]   DAO D Q , PEREZ E E , TENG Y et al. Nicotine enhances excitability of medial habenular neurons via facilitation of neurokinin signaling[J]. J Neurosci, 2014, 34 (12): 4273- 4284
doi: 10.1523/JNEUROSCI.2736-13.2014
[43]   FOWLER C D , LU Q , JOHNSON P M et al. Habenular α5 nicotinic receptor subunit signalling controls nicotine intake[J]. Nature, 2011, 471 (7340): 597- 601
doi: 10.1038/nature09797
[44]   PEREZ E , QUIJANO-CARDé N , DE BIASI M . Nicotinic mechanisms modulate ethanol withdrawal and modify time course and symptoms severity of simultaneous withdrawal from alcohol and nicotine[J]. Neuropsychopharmacology, 2015, 40 (10): 2327- 2336
doi: 10.1038/npp.2015.80
[45]   GLICK S D , RAMIREZ R L , LIVI J M et al. 18-Methoxycoronaridine acts in the medial habenula and/or interpeduncular nucleus to decrease morphine self-administration in rats[J]. Eur J Pharmacol, 2006, 537 (1-3): 94- 98
doi: 10.1016/j.ejphar.2006.03.045
[46]   NEUGEBAUER N M , EINSTEIN E B , LOPEZ M B et al. Morphine dependence and withdrawal induced changes in cholinergic signaling[J]. Pharmacol Biochem Behav, 2013, 109:77- 83
doi: 10.1016/j.pbb.2013.04.015
[47]   FRAHM S, ANTOLIN-FONTES B, G?RLICH A, et al. An essential role of acetylcholine-glutamate synergy at habenular synapses in nicotine dependence[J/OL]. Elife, 2015, 4: e11396.
[48]   PEREZ E E , DE BIASI M . Assessment of affective and somatic signs of ethanol withdrawal in C57BL/6J mice using a short-term ethanol treatment[J]. Alcohol, 2015, 49 (3): 237- 243
doi: 10.1016/j.alcohol.2015.02.003
[49]   FRIEDMAN A , LAX E , DIKSHTEIN Y et al. Electrical stimulation of the lateral habenula produces enduring inhibitory effect on cocaine seeking behavior[J]. Neuropharmacology, 2010, 59 (6): 452- 459
doi: 10.1016/j.neuropharm.2010.06.008
[50]   CRUNELLE C L , MILLER M L , BOOIJ J et al. The nicotinic acetylcholine receptor partial agonist varenicline and the treatment of drug dependence:a review[J]. Eur Neuropsychopharmacol, 2010, 20 (2): 69- 79
doi: 10.1016/j.euroneuro.2009.11.001
[51]   EGGAN B L , MCCALLUM S E . 18-Methoxycoronaridine acts in the medial habenula to attenuate behavioral and neurochemical sensitization to nicotine[J]. Behav Brain Res, 2016, 307:186- 193
doi: 10.1016/j.bbr.2016.04.008
[52]   KONONOFF J, KALLUPI M, KIMBROUGH A, et al. Systemic and intra-habenular activation of the orphan G protein-coupled receptor GPR139 decreases compulsive-like alcohol drinking and hyperalgesia in alcohol-dependent rats[J]. eNeuro, 2018, 5(3). pii: ENEURO.0153-18.2018.
[53]   BERNSTEIN H G , HILDEBRANDT J , DOBROWOLNY H et al. Morphometric analysis of the cerebral expression of ATP-binding cassette transporter protein ABCB1 in chronic schizophrenia:Circumscribed deficits in the habenula[J]. Schizophr Res, 2016, 177 (1-3): 52- 58
doi: 10.1016/j.schres.2016.02.036
[54]   ZHANG L , WANG H , LUAN S et al. Altered volume and functional connectivity of the habenula in schizophrenia[J]. Front Hum Neurosci, 2017, 11:636
[55]   SCHAFER M , KIM J W , JOSEPH J et al. Imaging habenula volume in schizophrenia and bipolar disorder[J]. Front Psychiatry, 2018, 9:456
[56]   SHEPARD P D , HOLCOMB H H , GOLD J M . Schizophrenia in translation:the presence of absence:habenular regulation of dopamine neurons and the encoding of negative outcomes[J]. Schizophr Bull, 2006, 32 (3): 417- 421
[57]   HELDT S A , RESSLER K J . Lesions of the habenula produce stress-and dopamine-dependent alterations in prepulse inhibition and locomotion[J]. Brain Res, 2006, 1073-1074:229- 239
doi: 10.1016/j.brainres.2005.12.053
[58]   DEDEURWAERDERE S , WINTMOLDERS C , VANHOOF G et al. Patterns of brain glucose metabolism induced by phosphodiesterase 10A inhibitors in the mouse:a potential translational biomarker[J]. J Pharmacol Exp Ther, 2011, 339 (1): 210- 217
doi: 10.1124/jpet.111.182766
[59]   NAKAJIMA M , MORI H , NISHIKAWA C et al. Psychiatric disorder-related abnormal behavior and habenulointerpeduncular pathway defects in Wnt1-cre and Wnt1-GAL4 double transgenic mice[J]. J Neurochem, 2013, 124 (2): 241- 249
doi: 10.1111/jnc.12085
[1] ZHU Ziling, TAN Jing, DENG Hong. Nucleus translocation of membrane/cytoplasm proteins in tumor cells[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 318-325.
[2] ZHANG Jianmin. Advances in surgical treatment of ischemic cerebrovascular disease[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 233-240.
[3] ZHANG Yunzhu, ZHU Chunpeng, LU Xinliang. Advances in serum biomarkers for early diagnosis of gastric cancer[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 326-333.
[4] Baboo Kalianee Devi,CHEN Zhengyun,ZHANG Xinmei. Progress on medical treatment in the management of adenomyosis[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 142-147.
[5] WU Binbin,YANG Yi. Biomarkers of cardiac surgery-associated acute kidney injury: a narrative review[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 224-229.
[6] YANG Kun,HU Xiaosheng. Research progress on miR-21 in heart diseases[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 214-218.
[7] XU Li,XU Ming,TONG Xiangmin. Effects of aerobic glycolysis on pathogenesis and drug resistance of non-Hodgkin lymphoma[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 219-223.
[8] ZHAO Shihao,ZHANG Xue,KE Yuehai. Progress on correlation between cell senescence and idiopathic pulmonary fibrosis[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 111-115.
[9] SONG Fangjun,GUO Hongtao. Progress on structural biology of voltage-gated ion channels[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 25-33.
[10] HONG Feifan,LI Yuezhou. Application of mechanosensitive channels in sonogenetics[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 34-38.
[11] XIAO Li,TONG Xiaoyong. Advances in molecular mechanism of vascular remodeling in pulmonary arterial hypertension[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 102-110.
[12] SHI Jing,FENG Jue. New inhibitors targeting bacterial RNA polymerase[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 44-49.
[13] SUN Boqiang,WANG Qiongyan,PAN Dongli. Mechanisms of herpes simplex virus latency and reactivation[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 89-101.
[14] SHEN Xiameng,LYU Weiguo. Research advances on the role of exosomes in chemotherapy resistance of ovarian cancer[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 116-120.
[15] CAO Liqin,SHI Jimin. Graft failure in allogeneic hematopoietic stem cell trans-plantation[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 651-658.