Please wait a minute...
J Zhejiang Univ (Med Sci)  2019, Vol. 48 Issue (3): 296-302    DOI: 10.3785/j.issn.1008-9292.2019.06.10
High dose vitamin C inhibits proliferation of breast cancer cells through reducing glycolysis and protein synthesis
WANG Qingmei(),XU Qianzi,WEI Anyi,CHEN Shishuo,ZHANG Chong*(),ZENG Linghui*()
School of Medicine, Zhejiang University City College, Hangzhou 310015, China
Download: HTML( 7 )   PDF(0KB)
Export: BibTeX | EndNote (RIS)      


Objective: To investigate the effects of high dose vitamin C (VC) on proliferation of breast cancer cells and to explore its mechanisms. Methods: Human breast cancer cells Bcap37 and MDA-MB-453 were treated with VC at low dose (0.01 mmol/L), medium dose (0.10 mmol/L) and high dose (2.00 mmol/L). Cell proliferation was determined with CCK-8 assay, protein expression was evaluated by Western blot, and the secretion of lactic acid in tumor cells was detected by colorimetric method. Bcap37 cells were inoculated in nude mice, and tumor baring nude mice were intraperitoneally injected with high VC(4 g/kg, VC group, n=5)or normal saline (control group, n=5) for 24 d. Tumor weight and body weight were calculated. Results: In vitro experiments demonstrated that high dose VC significantly inhibited cell proliferation in Bcap37 and MDA-MB-453 cells (all P < 0.01); the expressions of Glut1 and mTOR signaling pathway-related proteins were decreased (all P < 0.05); and the secretion of lactic acid was also markedly reduced (all P < 0.05). In vivo experiment showed that the tumor weight was decreased in mice treated with high-dose VC as compared with control group (P < 0.05), but no difference in body weights between two groups was observed. Conclusion: High dose VC may inhibit proliferation of breast cancer cells both in vitro and in vivo through reducing glycolysis and protein synthesis.

Key wordsBreast neoplasms/physiopathology      Ascorbic acid/administration &      dosage      Glucose transporter type 1/metabolism      Protein-serine-threonine kinases/biosynthesis      Signal transduction      Lactic acid/metabolism      Cell proliferation     
Received: 30 January 2019      Published: 04 September 2019
CLC:  R73-3  
Corresponding Authors: ZHANG Chong,ZENG Linghui     E-mail:;;
Cite this article:

WANG Qingmei, XU Qianzi, WEI Anyi, CHEN Shishuo, ZHANG Chong, ZENG Linghui. High dose vitamin C inhibits proliferation of breast cancer cells through reducing glycolysis and protein synthesis. J Zhejiang Univ (Med Sci), 2019, 48(3): 296-302.

URL:     OR


目的: 观察大剂量维生素C对乳腺癌细胞增殖及荷瘤小鼠肿瘤生长的影响,并探索其中的机制。方法: 以乳腺癌细胞Bcap37和MDA-MB-453为体外研究对象,分别给予小(0.01 mmol/L)、中(0.10 mmol/L)、大(2.00 mmol/L)剂量的维生素C。采用CCK-8试剂盒检测细胞增殖;蛋白质印迹法检测葡萄糖转运蛋白1(Glut1)和哺乳动物雷帕霉素靶蛋白(mTOR)信号通路相关蛋白表达;乳酸脱氢酶比色法测定乳酸含量。同时,取10只6周龄雌性BALB/c裸鼠,采用皮下接种乳腺癌Bcap37细胞建立荷瘤小鼠移植瘤模型,取5只小鼠腹腔注射维生素C(4 g/kg),观察肿瘤重量和小鼠体质量的变化。结果: 体外细胞学实验结果显示,与空白对照组比较,大剂量维生素C作用下Bcap37和MDA-MB-453细胞增殖受到抑制(均P < 0.01),Glut1转运蛋白表达减少(均P < 0.05),乳酸分泌量减少(均P < 0.01),mTOR信号通路相关蛋白表达水平下调(均P < 0.05)。体内实验结果显示,与对照组比较,大剂量维生素C组肿瘤重量明显减小(P < 0.05),但体质量增长无明显变化。结论: 大剂量维生素C可抑制乳腺癌细胞增殖,这一效果可能与大剂量维生素C抑制乳腺癌细胞能量摄取和下调mTOR信号通路有关。

关键词: 乳腺肿瘤/病理生理学,  抗坏血酸/投药和剂量,  葡萄糖转运体1型/代谢,  蛋白质丝氨酸苏氨酸激酶/生物合成,  信号传导,  乳酸/代谢,  细胞增殖 
Fig 1 Effects of different doses of vitamin C on proliferation of breast cancer cells
Fig 2 Effects of different doses of vitamin C on Glut1 and PFKP expression in breast cancer cells
Fig 3 Effects of different doses of vitamin C on secretion of lactic acid in breast cancer cells
Fig 4 Effects of different doses of vitamin C on mTOR signaling pathway in breast cancer cells
Fig 5 Tumor tissues of the control and experimental group received high dose of vitamin C
Fig 6 Weight growth of the control and experimental group received high dose of vitamin C
[1]   CHEN W , ZHENG R , BAADE P D et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66 (2): 115- 132
doi: 10.3322/caac.21338
[2]   BRAY F , JEMAL A , GREY N et al. Global cancer transitions according to the Human Development Index(2008-2030):a population-based study[J]. Lancet Oncol, 2012, 13 (8): 790- 801
doi: 10.1016/S1470-2045(12)70211-5
[3]   HAO C , WANG Z , GU Y et al. Prognostic value of osteopontin splice variant-c expression in breast cancers:a meta-analysis[J]. Biomed Res Int, 2016, 2016:7310694
[4]   MARTINI E . Jacques Cartier witnesses a treatment for scurvy[J]. Vesalius, 2002, 8 (1): 2- 6
[5]   MIKIROVA N , CASCIARI J , ROGERS A et al. Effect of high-dose intravenous vitamin C on inflammation in cancer patients[J]. J Transl Med, 2012, 10:189
doi: 10.1186/1479-5876-10-189
[6]   HANAHAN D , WEINBERG R A . Hallmarks of cancer:the next generation[J]. Cell, 2011, 144 (5): 646- 674
doi: 10.1016/j.cell.2011.02.013
[7]   WARBURG O . On the origin of cancer cells[J]. Science, 1956, 123 (3191): 309- 314
doi: 10.1126/science.123.3191.309
[8]   NGO D C , VERVERIS K , TORTORELLA S M et al. Introduction to the molecular basis of cancer metabolism and the Warburg effect[J]. Mol Biol Rep, 2015, 42 (4): 819- 823
doi: 10.1007/s11033-015-3857-y
[9]   VOLLBRACHT C , SCHNEIDER B , LEENDERT V et al. Intravenous vitamin C administration improves quality of life in breast cancer patients during chemo-/radiotherapy and aftercare:results of a retrospective, multicentre, epidemiological cohort study in Germany[J]. In Vivo, 2011, 25 (6): 983- 990
[10]   CONCIATORI F, CIUFFREDA L, BAZZICHETTO C, et al. mTOR cross-talk in cancer and potential for combination therapy[J/OL]. Cancers(Basel), 2018, 10(1). pii: E23.
[11]   WULLSCHLEGER S , LOEWITH R , HALL M N . TOR signaling in growth and metabolism[J]. Cell, 2006, 124 (3): 471- 484
doi: 10.1016/j.cell.2006.01.016
[12]   DAZERT E , HALL M N . mTOR signaling in disease[J]. Curr Opin Cell Biol, 2011, 23 (6): 744- 755
doi: 10.1016/
[13]   HAY N , SONENBERG N . Upstream and downstream of mTOR[J]. Genes Dev, 2004, 18 (16): 1926- 1945
doi: 10.1101/gad.1212704
[14]   YUN J , MULLARKY E , LU C et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH[J]. Science, 2015, 350 (6266): 1391- 1396
doi: 10.1126/science.aaa5004
[15]   MA Y , CHAPMAN J , LEVINE M et al. High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy[J]. Sci Transl Med, 2014, 6 (222): 222ra18
doi: 10.1126/scitranslmed.3007154
[16]   MONTI D A, MITCHELL E, BAZZAN A J, et al. Phase I evaluation of intravenous ascorbic acid in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer[J/OL]. PLoS One, 2012, 7(1): e29794.
[17]   YEOM C H , JUNG G C , SONG K J . Changes of terminal cancer patients' health-related quality of life after high dose vitamin C administration[J]. J Korean Med Sci, 2007, 22 (1): 7- 11
doi: 10.3346/jkms.2007.22.1.7
[18]   CAMERON E , CAMPBELL A , JACK T . The orthomolecular treatment of cancer. Ⅲ. Reticulum cell sarcoma:double complete regression induced by high-dose ascorbic acid therapy[J]. Chem Biol Interact, 1975, 11 (5): 387- 393
doi: 10.1016/0009-2797(75)90007-1
[19]   CAMERON E , PAULING L . Supplemental ascorbate in the supportive treatment of cancer:reevaluation of prolongation of survival times in terminal human cancer[J]. Proc Natl Acad Sci U S A, 1978, 75 (9): 4538- 4542
doi: 10.1073/pnas.75.9.4538
[20]   MOERTEL C G , FLEMING T R , CREAGAN E T et al. High-dose vitamin C versus placebo in the treatment of patients with advanced cancer who have had no prior chemotherapy. A randomized double-blind comparison[J]. N Engl J Med, 1985, 321 (3): 137- 141
[21]   CREAGAN E T , MOERTEL C G , O'FALLON J R et al. Failure of high-dose vitamin C (ascorbic acid) therapy to benefit patients with advanced cancer. A controlled trial[J]. N Engl J Med, 1979, 301 (13): 687- 690
doi: 10.1056/NEJM197909273011303
[22]   SAXTON R A , SABATINI D M . mTOR signaling in growth, metabolism, and disease[J]. Cell, 2017, 169 (2): 361- 371
[23]   LI H , LIU X , WANG Z et al. MEN1/Menin regulates milk protein synthesis through mTOR signaling in mammary epithelial cells[J]. Sci Rep, 2017, 7 (1): 5479
doi: 10.1038/s41598-017-06054-w
[1] ZHU Ziling, TAN Jing, DENG Hong. Nucleus translocation of membrane/cytoplasm proteins in tumor cells[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 318-325.
[2] SHAO Jiale,LI Zhizhong,ZHOU Jian,LI Kai,QIN Rong,CHEN Keming. Effect of low-frequency pulsed electromagnetic fields on activity of rat calvarial osteoblasts through IGF-1R/NO signaling pathway[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 158-164.
[3] LIANG Gang, NIU Yumiao, LI Yihan, Wei Anyi, DONG Jingyin, ZENG Linghui. Rapamycin treatment starting at 24 h after cerebral ischemia/reperfusion exhibits protective effect on brain injury in rats[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 443-449.
[4] ZHU Feng,FAN Miao,XU Ziwei,CAI Yiting,CHEN Yizhen,YU Shuang,ZENG Linghui. Neuroprotective effect of rapamycin against Parkinson's disease in mice[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 465-472.
[5] QIAN Bo,ZHANG Yanling,MO Xuming. Research progress on transcription factors and signal pathways involved in congenital esophageal atresia[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 239-243.
[6] PAN Zongfu,FANG Qilu,ZHANG Yiwen,LI Li,HUANG Ping. Identification of key pathways and drug repurposing for anaplastic thyroid carcinoma by integrated bioinformatics analysis[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 187-193.
[7] DING Jingjing,LU Yunbi. Research progress on receptor interacting proteins in inflammation[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 89-96.
[8] LIU Tingting,WANG Lingxiao,YANG Xiaohui,YAO Zhiqing,CAI Huizhen. TLR/NF-κB independent signaling pathway in TNF-α suppression of diabetic MyD88-knockout mice after Lycium barbarum polysaccharides administration[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 35-40.
[9] WEI Zhenlong,SHI Wengui,CHEN Keming,ZHOU Jian,WANG Minggang. Icaritin promotes maturation and mineralization of mouse osteoblast MC3T3-E1 cells through CXCR4/SDF-1 signal pathway[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 571-577.
[10] ZHANG Yi,ZHANG Li,ZHANG Qiyu,HONG Weilong,LIN Xiaohua. microRNA-222 regulates proliferation and apoptosis of fibroblasts in hypertrophic scar via matrix metalloproteinase 1[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 609-617.
[11] PEI Lei, XU Jingjing, ZHANG Minming. Correlation between high signal intensity in cerebrum nucleus on unenhanced T1-weighted MR images and number of previous gadolinium-based contrast agent administration[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 487-491.
[12] JIANG Yiqian, GUO Qingmin, GU Jianzhong, XU Xiaoping, AN Suhong, SU Fang, BAO Yanhong, HUANG Changxin, GUAN Xiaoxiang. Effect of microRNA-29b on proliferation and migration of breast cancer cells and its molecular mechanism[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 349-356.
[13] WANG Haifeng, CHEN Tiantian, WANG Yueyue, LI Yu, ZHANG Lingyu, DING Yongxing, CHEN Sulian, WANG Wenrui, YANG Qingling, CHEN Changjie. CXC chemokine receptor 4 regulates breast cancer cell cycle through S phase kinase associated protein 2[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 357-363.
[14] ZHANG Binbin, WU Meiling, LIU Luna, ZHU Yangbin, KAI Jiejing, ZENG Linghui. Inhibiting mammalian target of rapamycin signaling pathway improves cognitive function in mice with chronic cerebral ischemia[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 405-412.
[15] LI Yu, WANG Yueyue, WANG Haifeng, ZHANG Lingyu, DING Yongxing, CHEN Sulian, YANG Qingling, CHEN Changjie. Effects of lncRNA RP11-770J1.3 and TMEM25 expression on paclitaxel resistance in human breast cancer cells[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 364-370.