Please wait a minute...
J Zhejiang Univ (Med Sci)  2019, Vol. 48 Issue (2): 214-218    DOI: 10.3785/j.issn.1008-9292.2019.04.14
    
Research progress on miR-21 in heart diseases
YANG Kun(),HU Xiaosheng*()
Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
Download: HTML( 10 )   PDF(884KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Pathological processes such as myocardial apoptosis, cardiac hypertrophy, myocardial fibrosis, and cardiac electrical remodeling are involved in the development and progression of most cardiac diseases. MicroRNA-21 (miR-21) has been found to play an important role in heart diseases as a novel type of endogenous regulators, which can inhibit cardiomyocyte apoptosis, improve hypertension and cardiac hypertrophy, promote myocardial fibrosis and atrial electrical remodeling. In this review, we summarize the research progress on the function of miR-21 in heart diseases and its mechanism, and discuss its potential application in diagnosis and treatment of heart diseases.



Key wordsMicroRNAs      Gene expression      Cardiomegaly      Myocytes, cardiac      Apoptosis      Heart diseases/therapy      Heart diseases/diagnosis      Review     
Received: 10 January 2019      Published: 24 July 2019
CLC:  R363  
  R541  
Corresponding Authors: HU Xiaosheng     E-mail: 21618023@zju.edu.cn;1196017@zju.edu.cn
Cite this article:

YANG Kun,HU Xiaosheng. Research progress on miR-21 in heart diseases. J Zhejiang Univ (Med Sci), 2019, 48(2): 214-218.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2019.04.14     OR     http://www.zjujournals.com/med/Y2019/V48/I2/214


微小RNA-21在心脏疾病中的研究进展

心肌凋亡、心脏肥大、心肌纤维化和心房电重构等病理过程参与了绝大部分心脏疾病的发生和发展,阐明其中病理机制有助于心脏疾病的诊断和治疗。近年研究发现,微小RNA-21(miR-21)作为一类新型内源性调节因子,具有抑制心肌细胞凋亡、改善高血压和心脏肥大、促进心肌纤维化进展、促进心房电重构等作用。本文就miR-21在心脏疾病中的作用和机制研究进展进行综述,并初步探讨miRNA作为心脏疾病临床诊断标志物和治疗靶点的应用前景。


关键词: 微RNA,  基因表达,  心脏扩大,  肌细胞, 心脏,  细胞凋亡,  心脏病/治疗,  心脏病/诊断,  综述 
[1]   LI C J, CHEN C S, YIANG G T, et al. Advanced evolution of pathogenesis concepts in cardiomyopathies[J/OL]. J Clin Med, 2019, 8(4): pii: E520.
[2]   MARTINEZ S R , GAY M S , ZHANG L . Epigenetic mechanisms in heart development and disease[J]. Drug Discov Today, 2015, 20 (7): 799- 811
doi: 10.1016/j.drudis.2014.12.018
[3]   WANG F , JIA J , RODRIGUES B . Autophagy, metabolic disease, and pathogenesis of heart dysfunction[J]. Can J Cardiol, 2017, 33 (7): 850- 859
doi: 10.1016/j.cjca.2017.01.002
[4]   CHISTIAKOV D A , OREKHOV A N , BOBRYSHEV Y V . Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction)[J]. J Mol Cell Cardiol, 2016, 94:107- 121
doi: 10.1016/j.yjmcc.2016.03.015
[5]   VACANTE F , DENBY L , SLUIMER J C et al. The function of miR-143, miR-145 and the MiR-143 host gene in cardiovascular development and disease[J]. Vascul Pharmacol, 2019, 112:24- 30
doi: 10.1016/j.vph.2018.11.006
[6]   GANDHI S, RUEHLE F, STOLL M. Evolutionary patterns of non-coding RNA in cardiovascular biology[J/OL]. Noncoding RNA, 2019, 5(1): pii: E15.
[7]   CAI X , HAGEDORN C H , CULLEN B R . Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs[J]. RNA, 2004, 10 (12): 1957- 1966
doi: 10.1261/rna.7135204
[8]   LORENZEN J M , SCHAUERTE C , HVBNER A et al. Osteopontin is indispensible for AP1-mediated angiotensin Ⅱ-related miR-21 transcription during cardiac fibrosis[J]. Eur Heart J, 2015, 36 (32): 2184- 2196
doi: 10.1093/eurheartj/ehv109
[9]   LIU Y , NIE H , ZHANG K et al. A feedback regulatory loop between HIF-1α and miR-21 in response to hypoxia in cardiomyocytes[J]. FEBS Lett, 2014, 588 (17): 3137- 3146
doi: 10.1016/j.febslet.2014.05.067
[10]   GRYSHKOVA V , FLEMING A , MCGHAN P et al. miR-21-5p as a potential biomarker of inflammatory infiltration in the heart upon acute drug-induced cardiac injury in rats[J]. Toxicol Lett, 2018, 286:31- 38
doi: 10.1016/j.toxlet.2018.01.013
[11]   TERINGOVA E , TOUSEK P . Apoptosis in ischemic heart disease[J]. J Transl Med, 2017, 15:87
doi: 10.1186/s12967-017-1191-y
[12]   DONG S , CHENG Y , YANG J et al. MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction[J]. J Biol Chem, 2009, 284 (43): 29514- 29525
doi: 10.1074/jbc.M109.027896
[13]   CHENG Y , LIU X , ZHANG S et al. MicroRNA-21 protects against the H2O2-induced injury on cardiac myocytes via its target gene PDCD4[J]. J Mol Cell Cardiol, 2009, 47 (1): 5- 14
doi: 10.1016/j.yjmcc.2009.01.008
[14]   CHENG Y , ZHU P , YANG J et al. Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4[J]. Cardiovasc Res, 2010, 87 (3): 431- 439
doi: 10.1093/cvr/cvq082
[15]   SCHWARTZBAUER G , ROBBINS J . The tumor suppressor gene PTEN can regulate cardiac hypertrophy and survival[J]. J Biol Chem, 2001, 276 (38): 35786- 35793
doi: 10.1074/jbc.M102479200
[16]   CAI Z , SEMENZA G L . PTEN activity is modulated during ischemia and reperfusion:involvement in the induction and decay of preconditioning[J]. Circ Res, 2005, 97 (12): 1351- 1359
doi: 10.1161/01.RES.0000195656.52760.30
[17]   OUDIT G Y , SUN H , KERFANT B G et al. The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease[J]. J Mol Cell Cardiol, 2004, 37 (2): 449- 471
doi: 10.1016/j.yjmcc.2004.05.015
[18]   RANA A , GOYAL N , AHLAWAT A et al. Mechanisms involved in attenuated cardio-protective role of ischemic preconditioning in metabolic disorders[J]. Perfusion, 2015, 30 (2): 94- 105
doi: 10.1177/0267659114536760
[19]   JUNG C H , RO S H , CAO J et al. mTOR regulation of autophagy[J]. FEBS Lett, 2010, 584 (7): 1287- 1295
doi: 10.1016/j.febslet.2010.01.017
[20]   LOPICCOLO J , BLUMENTHAL G M , BERNSTEIN W B et al. Targeting the PI3K/Akt/mTOR pathway:effective combinations and clinical considerations[J]. Drug Resist Updat, 2008, 11 (1-2): 32- 50
doi: 10.1016/j.drup.2007.11.003
[21]   HUANG Z , WU S , KONG F et al. MicroRNA-21 protects against cardiac hypoxia/reoxygenation injury by inhibiting excessive autophagy in H9c2 cells via the Akt/mTOR pathway[J]. J Cell Mol Med, 2017, 21 (3): 467- 474
doi: 10.1111/jcmm.2017.21.issue-3
[22]   KONTARAKI J E , MARKETOU M E , PARTHENAKIS F I et al. Hypertrophic and antihypertrophic microRNA levels in peripheral blood mononuclear cells and their relationship to left ventricular hypertrophy in patients with essential hypertension[J]. J Am Soc Hypertens, 2015, 9 (10): 802- 810
doi: 10.1016/j.jash.2015.07.013
[23]   LI H , ZHANG X , WANG F et al. MicroRNA-21 lowers blood pressure in spontaneous hypertensive rats by upregulating mitochondrial translation[J]. Circulation, 2016, 134 (10): 734- 751
doi: 10.1161/CIRCULATIONAHA.116.023926
[24]   WANG F , FANG Q , CHEN C et al. Recombinant adeno-associated virus-mediated delivery of microRNA-21-3p lowers hypertension[J]. Mol Ther Nucleic Acids, 2018, 11:354- 366
doi: 10.1016/j.omtn.2017.11.007
[25]   THUM T , GROSS C , FIEDLER J et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts[J]. Nature, 2008, 456 (7224): 980- 984
doi: 10.1038/nature07511
[26]   YUAN J , CHEN H , GE D et al. Mir-21 Promotes cardiac fibrosis after myocardial infarction via targeting smad7[J]. Cell Physiol Biochem, 2017, 42 (6): 2207- 2219
doi: 10.1159/000479995
[27]   GARCíA R , NISTAL J F , MERINO D et al. p-SMAD2/3 and DICER promote pre-miR-21 processing during pressure overload-associated myocardial remodeling[J]. Biochim Biophys Acta, 2015, 1852 (7): 1520- 1530
doi: 10.1016/j.bbadis.2015.04.006
[28]   ZHOU X L , XU H , LIU Z B et al. miR-21 promotes cardiac fibroblast-to-myofibroblast trans-formation and myocardial fibrosis by targeting Jagged1[J]. J Cell Mol Med, 2018, 22 (8): 3816- 3824
doi: 10.1111/jcmm.2018.22.issue-8
[29]   PATRICK D M , MONTGOMERY R L , QI X et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice[J]. J Clin Invest, 2010, 120 (11): 3912- 3916
doi: 10.1172/JCI43604
[30]   BARANA A , MATAMOROS M , DOLZ-GAITóN P et al. Chronic atrial fibrillation increases microRNA-21 in human atrial myocytes decreasing L-type calcium current[J]. Circ Arrhythm Electrophysiol, 2014, 7 (5): 861- 868
doi: 10.1161/CIRCEP.114.001709
[31]   VIERECK J , THUM T . Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury[J]. Circ Res, 2017, 120 (2): 381- 399
doi: 10.1161/CIRCRESAHA.116.308434
[32]   ZHANG J , XING Q , ZHOU X et al. Circulating miRNA-21 is a promising biomarker for heart failure[J]. Mol Med Rep, 2017, 16 (5): 7766- 7774
doi: 10.3892/mmr.2017.7575
[33]   VILLAR A V , GARCíA R , MERINO D et al. Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients[J]. Int J Cardiol, 2013, 167 (6): 2875- 2881
doi: 10.1016/j.ijcard.2012.07.021
[34]   FANG L , ELLIMS A H , MOORE X L et al. Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy[J]. J Transl Med, 2015, 13:314
doi: 10.1186/s12967-015-0672-0
[35]   WANG F, LONG G, ZHAO C, et al. Atherosclerosis-related circulating miRNAs as novel and sensitive predictors for acute myocardial infarction[J/OL]. PLoS One, 2014, 9(9): e105734.
[36]   NAIR N , GUPTA S , COLLIER I X et al. Can microRNAs emerge as biomarkers in distinguishing HFpEF versus HFrEF?[J]. Int J Cardiol, 2014, 175 (3): 395- 399
doi: 10.1016/j.ijcard.2014.06.027
[37]   LUTHER K M , HAAR L , MCGUINNESS M et al. Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells[J]. J Mol Cell Cardiol, 2018, 119:125- 137
doi: 10.1016/j.yjmcc.2018.04.012
[38]   CAI C L , MOLKENTIN J D . The elusive progenitor cell in cardiac regeneration:slip slidin' away[J]. Circ Res, 2017, 120 (2): 400- 406
doi: 10.1161/CIRCRESAHA.116.309710
[39]   XIAO J, PAN Y, LI X H, et al. Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4[J/OL]. Cell Death Dis, 2016, 7(6): e2277.
[1] MA Jing, HE Wenlong, GAO Chongyang, YU Ruiyun, XUE Peng, NIU Yongchao. Glucosides of chaenomeles speciosa attenuate ischemia/reperfusion-induced brain injury by regulating NF-κB P65/TNF-α in mouse model[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 289-295.
[2] ZHU Ziling, TAN Jing, DENG Hong. Nucleus translocation of membrane/cytoplasm proteins in tumor cells[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 318-325.
[3] ZHANG Jianmin. Advances in surgical treatment of ischemic cerebrovascular disease[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 233-240.
[4] WU Yuxing, ZHANG Shihong, CHEN Zhong. The roles of habenula and related neural circuits in neuropsychiatric diseases[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 310-317.
[5] ZHANG Yunzhu, ZHU Chunpeng, LU Xinliang. Advances in serum biomarkers for early diagnosis of gastric cancer[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 326-333.
[6] Baboo Kalianee Devi,CHEN Zhengyun,ZHANG Xinmei. Progress on medical treatment in the management of adenomyosis[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 142-147.
[7] WU Binbin,YANG Yi. Biomarkers of cardiac surgery-associated acute kidney injury: a narrative review[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 224-229.
[8] LUN Yongzhi,SUN Jie. Identification of differentially expressed genes in peripheral blood mononuclear cells of patients with hepatocellular carcinoma and its regulatory network analysis[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 148-157.
[9] XU Li,XU Ming,TONG Xiangmin. Effects of aerobic glycolysis on pathogenesis and drug resistance of non-Hodgkin lymphoma[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 219-223.
[10] ZHAO Shihao,ZHANG Xue,KE Yuehai. Progress on correlation between cell senescence and idiopathic pulmonary fibrosis[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 111-115.
[11] SONG Fangjun,GUO Hongtao. Progress on structural biology of voltage-gated ion channels[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 25-33.
[12] HONG Feifan,LI Yuezhou. Application of mechanosensitive channels in sonogenetics[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 34-38.
[13] XIAO Li,TONG Xiaoyong. Advances in molecular mechanism of vascular remodeling in pulmonary arterial hypertension[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 102-110.
[14] TANG Siyang,YE Jia,LI Yuezhou. I1363T mutation induces the defects in fast inactivation of human skeletal muscle voltage-gated sodium channel[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 12-18.
[15] SHI Jing,FENG Jue. New inhibitors targeting bacterial RNA polymerase[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 44-49.