Please wait a minute...
J Zhejiang Univ (Med Sci)  2019, Vol. 48 Issue (1): 102-110    DOI: 10.3785/j.issn.1008-9292.2019.02.15
    
Advances in molecular mechanism of vascular remodeling in pulmonary arterial hypertension
XIAO Li(),TONG Xiaoyong()
Department of Pharmacology, School of PharmaceuticalSciences, Chongqing University, Chongqing 401331, China
Download: HTML( 9 )   PDF(881KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Pulmonary arterial hypertension (PAH) is a clinical hemodynamic syndrome characterized by elevated pulmonary arterial pressure and pulmonary vascular resistance leading to right heart failure and death. Vascular remodeling is the most prominent histopathological feature of PAH, which is regulated by many factors. Endoplasmic reticulum stress, calcium disorder and mitochondrial dysfunction are involved in the vascular cell proliferation and apoptosis by regulating intracellular calcium homeostasis and cellular metabolism. Epigenetic phenomenon such as DNA damage and abnormal expression of miRNA are also involved in the regulation of abnormal proliferation of vascular cells. Vascular cell phenotype switching including endothelial-mesenchymal transition and smooth muscle cell phenotype switching play an important role in abnormal proliferation of vascular cells. Vascular remodeling is produced by a variety of cells and molecular pathways, and aiming at multiple targets which is expected to find a new breakthrough in the treatment of PAH, and to improve abnormal vascular remodeling, delay or even reverse the progression of PAH.



Key wordsHypertension, pulmonary/pathology      Ventricular remodeling      Endoplasmic reticulum stress      Calcium/metabolism      Calmodulin/metabolism      Mitochondria      Epigenesis, genetic      Phenotype      Review     
Received: 30 August 2018      Published: 10 May 2019
CLC:  R543.2  
Corresponding Authors: TONG Xiaoyong     E-mail: 464843732@qq.com;xiaoyongtong@cqu.edu.cn
Cite this article:

XIAO Li,TONG Xiaoyong. Advances in molecular mechanism of vascular remodeling in pulmonary arterial hypertension. J Zhejiang Univ (Med Sci), 2019, 48(1): 102-110.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2019.02.15     OR     http://www.zjujournals.com/med/Y2019/V48/I1/102


肺动脉高压形成中的血管重构分子生物学机制研究进展

肺动脉高压(PAH)是以肺动脉压和肺血管阻力升高为特征的临床血流动力学症候群,可导致右心衰竭和死亡。血管重构是PAH最显著的组织病理学特征,其形成受多方面因素的调控。内质网应激、钙紊乱和线粒体功能紊乱通过调节细胞内钙稳态和细胞代谢调控血管细胞的增殖凋亡能力;表观遗传学现象(如DNA损伤和微小RNA表达异常)参与调控血管细胞的异常增殖;血管细胞表型转化(包括内皮细胞间质转化和平滑肌细胞表型转换)是引起血管细胞异常增殖的重要原因。血管重构由多种细胞和分子通路共同作用产生,针对多靶点来改善PAH中发生的异常血管重构,进而延缓甚至逆转PAH的进程,有望成为PAH治疗上新的突破口。


关键词: 高血压,肺性/病理学,  心室重构,  内质网应激,  钙/代谢,  钙调蛋白/代谢,  线粒体,  后成说,遗传,  表型,  综述 
微小RNA 肺动脉高压患者中的表达 参与血管重构信号通路 参考文献
miR-21 增加 BMPR2/ miR-21/ RhoB 53

miR-130/310

增加

miR-130/310 /miR-204/ STAT3

miR-130/310/PPARγ

54-55

miR-29b

减少

miR-29b /Mcl-1

miR-29b / CCND2

56

miR-222

增加

miR-222/ P27

miR-222/ TIMP3

57

miR-26b 减少 miR-26b/SRF/CTGF 58

miR-361-5p

增多

miR-361-5p /ABCA1

miR-361-5p/ JAK2/STAT3

59

miR138 增加 miR138/TASK1 60
miR-150 减少 miR-150/ HIF-1a 61
miR-221-3p 增加 miR-221-3p/ AXIN2 62

miR-17~92

增加

STAT3-miR-17~92-BMPR2

miR-17~92/PHD2/ HIF1α

miR-17~92/PDLIM5/TGF-β3/ pSmad3

63-64

miR-23a 增加 miR-23a /BMPR2/Smad1 65
Table 1 Expression of miRNA in patients with pulmonary arterial hypertension and related signaling pathways
Figure 1 Schematic diagram of endothelial-mesenchymal transition
[1]   YUAN J X , RUBIN L J . Pathogenesis of pulmonary arterial hypertension: the need for multiple hits[J]. Circulation,2005,111(5):534-538.
[2]   VONK NOORDEGRAAF A , GROENEVELDT J A , BOGAARD H J . Pulmonary hypertension [J]. Eur Respir Rev,2016,25(139):4-11.
[3]   MCGOON M D , BENZA R L , ESCRIBANO-SUBIAS P , et al . Pulmonary arterial hypertension: epidemiology and registries[J]. J Am Coll Cardiol,2013,62(25 Suppl):D51-D59.
[4]   YEAGER M E , BELCHENKO D D , NGUYEN C M , et al . Endothelin-1, the unfolded protein response, and persistent inflammation: role of pulmonary artery smooth muscle cells[J]. Am J Respir Cell Mol Biol,2012,46(1):14-22.
[5]   YEAGER M E , REDDY M B , NGUYEN C M , et al . Activation of the unfolded protein response is associated with pulmonary hypertension [J].Pulm Circ,2012,2(2):229-240.
[6]   PETER D , ROXANE P , STENSON T H , et al . Attenuating endoplasmic reticulum stress as a novel therapeutic strategy in pulmonary hypertension [J]. Circulation,2013,127(1):115-125.
[7]   KOYAMA M , FURUHASHI M , ISHIMURA S , et al . Reduction of endoplasmic reticulum stress by 4-phenylbutyric acid prevents the development of hypoxia-induced pulmonary arterial hypertension[J]. Am J Physiol Heart Circ Physiol,2014,306(9):H1314-H1323.
[8]   CHEN R , ZHONG W , SHAO C , et al . Docosahexaenoic acid inhibits monocrotaline-induced pulmonary hypertension via attenuating endoplasmic reticulum stress and inflammation[J]. Am J Physiol Lung Cell Mol Physiol,2018,314(2):L243-L255.
[9]   WANG G , LIU S , WANG L , et al . Lipocalin-2 promotes endoplasmic reticulum stress and proliferation by augmenting intracellular iron in human pulmonary arterial smooth muscle cells[J]. Int J Biol Sci,2017,13(2):135-144.
[10]   BONNET S , ROCHEFORT G , SUTENDRA G , et al . The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted[J]. Proc Natl Acad Sci U S A,2007,104(27):11418-11423.
[11]   STAMMERS A N , SUSSER S E , HAMM N C , et al . The regulation of sarco(endo)plasmic reticulum calcium-ATPases (SERCA)[J]. Can J Physiol Pharmacol,2015,93(10):843-854.
[12]   BOBE R , HADRI L , LOPEZ J J , et al . SERCA2a controls the mode of agonist-induced intracellular Ca2+ signal, transcription factor NFAT and proliferation in human vascular smooth muscle cells[J]. J Mol Cell Cardiol,2011,50(4):621-633.
[13]   HADRI L , KRATLIAN R G , BENARD L , et al . Therapeutic efficacy of AAV1.SERCA2a in monocrotaline-induced pulmonary arterial hypertension[J]. Circulation,2013,128(5):512-523.
[14]   LIPSKAIA L , DEL M F, CAPIOD T , et al . Sarco/endoplasmic reticulum Ca2+-ATPase gene transfer reduces vascular smooth muscle cell proliferation and neointima formation in the rat [J]. Circ Res,2005,97(5):488-495.
[15]   HADRI L , KRATLIAN R G , BENARD L , et al . Therapeutic efficacy of AAV1.SERCA2a in monocrotaline-induced pulmonary arterial hypertension[J]. Circulation,2013,128(5):512-523.
[16]   AGUERO J , ISHIKAWA K , HADRI L , et al . Intratracheal gene delivery of SERCA2a ameliorates chronic post-capillary pulmonary hypertension: a large animal model [J]. J Am Coll Cardiol,2016,67(17):2032-2046.
[17]   MCMURTRY M S , BONNET S , WU X , et al . Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis [J]. Circ Res,2004,95(8):830-840.
[18]   MARSBOOM G , TOTH P T , RYAN J J , et al . Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension[J]. Circ Res,2012,110(11):1484-1497.
[19]   PIAO L , SIDHU V K , FANG Y H , et al . FOXO1-mediated upregulation of pyruvate dehydrogenase kinase-4 (PDK4) decreases glucose oxidation and impairs right ventricular function in pulmonary hypertension: therapeutic benefits of dichloroacetate[J]. J Mol Med (Berl),2013,91(3):333-346.
[20]   DROMPARIS P , PAULIN R , SUTENDRA G , et al . Uncoupling protein 2 deficiency mimics the effects of hypoxia and endoplasmic reticulum stress on mitochondria and triggers pseudohypoxic pulmonary vascular remodeling and pulmonary hypertension [J]. Circ Res,2013,113(2):126-136.
[21]   CHEN J , WANG Y X , DONG M Q , et al . Reoxygenation reverses hypoxic pulmonary arterial remodeling by inducing smooth muscle cell apoptosis via reactive oxygen species-mediated mitochondrial dysfunction [J/OL]. J Am Heart Assoc,2017,6(6):pii:e005602.
[22]   YOULE R J , AM V D B . Mitochondrial fission, fusion, and stress[J]. Science,2012,337(6098):1062-1065.
[23]   MA C, ZHANG C , MA M, et al . MiR-125a regulates mitochondrial homeostasis through targeting mitofusin 1 to control hypoxic pulmonary vascular remodeling[J]. J Mol Med (Berl),2017,95(9):977-993.
[24]   FANG X , CHEN X , ZHONG G , et al . Mitofusin 2 downregulation triggers pulmonary artery smooth muscle cell proliferation and apoptosis imbalance in rats with hypoxic pulmonary hypertension via the PI3K/Akt and mitochondrial apoptosis pathways[J]. J Cardiovasc Pharma,2016,67(2):164-174.
[25]   RYAN J J , MARSBOOM G , FANG Y H , et al . PGC1α-mediated mitofusin-2 deficiency in female rats and humans with pulmonary arterial hypertension[J]. Am J Respir Crit Care Med,2013,187(8):865-878.
[26]   RYAN J , DASGUPTA A , HUSTON J , et al . Mitochondrial dynamics in pulmonary arterial hypertension[J]. J Mol Med (Berl),2015,93(3):229-242.
[27]   ZHU T T , ZHANG W F , LUO P , et al . Epigallocatechin-3-gallate ameliorates hypoxia-induced pulmonary vascular remodeling by promoting mitofusin-2-mediated mitochondrial fusion [J]. Eur J Pharmacol,2017,809:42-51.
[28]   YELIGAR S M , KANG B Y , BIJLI K M , et al . PPARγ regulates mitochondrial structure and function and HPASMC proliferation [J]. Am J Respir Cell Mol Biol,2018,58(5):648-657.
[29]   SUTENDRA G , DROMPARIS P , WRIGHT P , et al . The role of Nogo and the mitochondria-endoplasmic reticulum unit in pulmonary hypertension[J]. Sci Transl Med,2011,3(88):88ra55.
[30]   MELOCHE J , PFLIEGER A , VAILLANCOURT M , et al . Role for DNA damage signaling in pulmonary arterial hypertension[J]. Circulation,2014,129(7):786-797.
[31]   VAILLANCOURT M , RUFFENACH G , MELOCHE J , et al . Adaptation and remodelling of the pulmonary circulation in pulmonary hypertension[J]. Can J Cardiol,2015,31(4):407-415.
[32]   MELOCHE J , LE G M , POTUS F , et al . miR-223 reverses experimental pulmonary arterial hypertension[J]. Am J Physiol Cell Physiol,2015,309(6):C363-C372.
[33]   MELOCHE J , POTUS F , VAILLANCOURT M , et al . Bromodomain-containing protein 4: the epigenetic origin of pulmonary arterial hypertension [J]. Circ Res,2015,117(6):525-535.
[34]   KUMAR R . Nuclear signaling pathways and targeting transcription in cancer[M]. Berlin: Springer,2013.
[35]   HU S , QU Y , XU X , et al . Nuclear survivin and its relationship to DNA damage repair genes in non-small cell lung cancer investigated using tissue array[J/OL]. PLoS One,2013,8(9):e74161.
[36]   PAULIN R , MELOCHE J , JACOB M H , et al . Dehydroepiandrosterone inhibits the Src/STAT3 constitutive activation in pulmonary arterial hypertension[J]. Am J Physiol Heart Circ Physiol,2011,301(5):H1798-H1809.
[37]   MCMURTRY M S , ARCHER S L , ALTIERI D C , et al . Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension[J]. J Clin Invest,2005,115(6):1479-1491.
[38]   HU F , LIU C , LIU H , et al . Ataxia-telangiectasia mutated (ATM) protein signaling participates in development of pulmonary arterial hypertension in rats[J]. Med Sci Monit,2017,23:4391-4400.
[39]   LóPEZ-LóPEZ L , NIEVES-PLAZA M , CASTRO MDEL R , et al . Mitochondrial DNA damage is associated with damage accrual and disease duration in patients with systemic lupus erythematosus[J]. Lupus,2014,23(11):1133-1141.
[40]   FETTERMAN J L , HOLBROOK M , WESTBROOK D G , et al . Mitochondrial DNA damage and vascular function in patients with diabetes mellitus and atherosclerotic cardiovascular disease[J]. Cardiovas Diabetol,2016,15(1):53.
[41]   CHEN P I , CAO A , MIYAGAWA K , et al . Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension[J/OL]. JCI Insight,2017,2(2):e90427.
[42]   CHENG Y , REN X , GOWDA A S , et al . Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress[J/OL]. Cell Death Dis,2013,4:e731.
[43]   PAULIN R , DROMPARIS P , SUTENDRA G , et al . Sirtuin 3 deficiency is associated with inhibited mitochondrial function and pulmonary arterial hypertension in rodents and humans[J]. Cell Metab,2014,20(5):827-839.
[44]   AMBROS V . microRNAs: tiny regulators with great potential[J]. Cell,2001,107(7):823-826.
[45]   KIM G H, RYAN J J , MARSBOOM G , et al . Epigenetic mechanisms of pulmonary hypertension[J]. Pulm Circ,2011,1(3):347-356.
[46]   LI M , RIDDLE S R , FRID M G , et al . Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension[J]. J Immunol,2011,187(5):2711-2722.
[47]   BOCKMEYER C L , MAEGEL L , JANCIAUSKIENE S , et al . Plexiform vasculopathy of severe pulmonary arterial hypertension and microRNA expression[J]. J Heart Lung Transplant,2012,31(7):764-772.
[48]   BOETTGER T , BEETZ N , KOSTIN S , et al . Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster[J]. J Clin Invest,2009,119(9):2634-2647.
[49]   CARUSO P , DEMPSIE Y , STEVENS H C , et al . A role for miR-145 in pulmonary arterial hypertension: evidence from mouse models and patient samples[J]. Circ Res,2012,111(3):290-300.
[50]   LEE C, MITSIALIS S A , ASLAM M , et al . Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension[J]. Circulation,2012,126(22):2601-2611.
[51]   COURBOULIN A , PAULIN R , GIGUèRE N J , et al . Role for miR-204 in human pulmonary arterial hypertension[J]. J Exp Med,2011,208(3):535-548.
[52]   STEVENS H C , DENG L , GRANT J S , et al . Regulation and function of miR-214 in pulmonary arterial hypertension[J]. Pulm Circ,2016,6(1):109-117.
[53]   PARIKH V N , JIN R C , RABELLO S , et al . MicroRNA-21 integrates pathogenic signaling to control pulmonary hypertension: results of a network bioinformatics approach[J]. Circulation,2012,125(12):1520-1532.
[54]   BERTERO T , COTTRILL K , KRAUSZMAN A , et al . The microRNA-130/301 family controls vasoconstriction in pulmonary hypertension[J]. J Biol Chem,2015,290(4):2069-2085.
[55]   BERTERO T , LU Y , ANNIS S , et al . Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension[J]. J Clin Invest,2014,124(8):3514-3528.
[56]   CHEN J , LI Y , LI Y , et al . Effect of miR-29b on the proliferation and apoptosis of pulmonary artery smooth muscle cells by targeting Mcl-1 and CCND2[J]. Biomed Res Int,2018,2018:6051407.
[57]   XU Y , BEI Y , SHEN S , et al . MicroRNA-222 Promotes the proliferation of pulmonary arterial smooth muscle cells by targeting P27 and TIMP3[J]. Cell Physiol Biochem,2017,43(1):282-292.
[58]   ZHOU S , SUN L , CAO C , et al . Hypoxia-induced microRNA-26b inhibition contributes to hypoxic pulmonary hypertension via CTGF[J]. J Cell Biochem,2018,119(2):1942-1952.
[59]   ZHANG X , SHAO R , GAO W , et al . Inhibition of miR-361-5p suppressed pulmonary artery smooth muscle cell survival and migration by targeting ABCA1 and inhibiting the JAK2/STAT3 pathway[J]. Exp Cell Res,2018,363(2):255-261.
[60]   LIU J J , ZHANG H , XING F , et al . MicroRNA?138 promotes proliferation and suppresses mitochondrial depolarization in human pulmonary artery smooth muscle cells through targeting TASK?1[J]. Mol Med Rep,2018,17(2):3021-3027.
[61]   CHEN M , SHEN C , ZHANG Y , et al . MicroRNA-150 attenuates hypoxia-induced excessive proliferation and migration of pulmonary arterial smooth muscle cells through reducing HIF-1alpha expression [J]. Biomed Pharmacother,2017,93:861-868.
[62]   NIE X , CHEN Y , TAN J , et al . MicroRNA-221-3p promotes pulmonary artery smooth muscle cells proliferation by targeting AXIN2 during pulmonary arterial hypertension[J]. Vascul Pharmacol,2017, pii:S1537-189130374-3.
[63]   CHEN T , ZHOU Q , TANG H , et al .miR-17/20 controls prolyl hydroxylase 2 (PHD2 factor )/hypoxia-inducible 1 (HIF 1) to regulate pulmonary artery smooth muscle cell proliferation[J/OL]. J Am Heart Assoc,2016,5(12):pii:e004510.
[64]   BROCK M , TRENKMANN M , GAY R E, et al . Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway[J]. Circ Res,2009,104(10):1184-1191.
[65]   ZHANG Y , PENG B , HAN Y . MiR-23a regulates the proliferation and migration of human pulmonary artery smooth muscle cells (HPASMCs) through targeting BMPR2/Smad1 signaling[J]. Biomed Pharmacother,2018,103:1279-1286.
[66]   LEOPOLD J A , MARON B A . Molecular mechanisms of pulmonary vascular remodeling in pulmonary arterial hypertension[J/OL]. Int J Mol Sci,2016,17(5):pii:E761.
[67]   GOOD R B , GILBANE A J , TRINDER S L , et al . Endothelial to mesenchymal transition contributes to endothelial dysfunction in pulmonary arterial hypertension[J]. Am J Pathol,2015,185(7):1850-1858.
[68]   SUZUKI T , CARRIER E J , TALATI M H , et al . Isolation and characterization of endothelial-to-mesenchymal transition cells in pulmonary arterial hypertension[J]. Am J Physiol Lung Cell Mol Physiol,2018,314(1):L118-L126.
[69]   FRID M G , KALE V A , STENMARK K R . Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation: in vitro analysis[J]. Circ Res,2002,90(11):1189-1196.
[70]   QIAO L , NISHIMURA T , SHI L , et al . Endothelial fate mapping in mice with pulmonary hypertension[J]. Circulation,2014,129(6):692-703.
[71]   RANCHOUX B , ANTIGNY F , RUCKER-MARTIN C , et al . Endothelial-to-mesenchymal transition in pulmonary hypertension[J]. Circulation,2015,131(11):1006-1018.
[72]   SONG S , ZHANG M , YI Z , et al . The role of PDGF-B/TGF-β1/neprilysin network in regulating endothelial-to-mesenchymal transition in pulmonary artery remodeling[J]. Cell Signal,2016,28(10):1489-1501.
[73]   KRENNING G , BARAUNA V G , KRIEGER J E , et al . Endothelial plasticity: shifting phenotypes through force feedback[J]. Stem Cells Int,2016,2016:9762959.
[74]   SABBINENI H , VERMA A , SOMANATH P R . Isoform-specific effects of transforming growth factor β on endothelial-to-mesenchymal transition[J]. J Cell Physiol,2018,233(11):8418-8428.
[75]   HOPPER R K , MOONEN J R , DIEBOLD I , et al . In pulmonary arterial hypertension, reduced BMPR2 promotes endothelial-to-mesenchymal transition via HMGA1 and its target slug[J]. Circulation,2016,133(18):1783-1794.
[76]   MAMMOTO T , MUYLEART M , KONDURI G G , et al . Twist1 in hypoxia-induced pulmonary hypertension through transforming growth factor-β–Smad signaling [J]. Am J Respir Cell Mol Biol,2018,58(2):194-207.
[77]   ZHANG H , LIU Y , YAN L , et al . Bone morphogenetic protein-7 inhibits endothelial-mesenchymal transition in pulmonary artery endothelial cell under hypoxia[J]. J Cell Physiol,2018,233(5):4077-4090.
[78]   ZHU P , HUANG L , GE X , et al . Transdifferentiation of pulmonary arteriolar endothelial cells into smooth muscle-like cells regulated by myocardin involved in hypoxia-induced pulmonary vascular remodelling[J]. Int J Exp Pathol,2006,87(6):463-474.
[79]   ZHANG W , ZHU T , WU W , et al . LOX-1 mediated phenotypic switching of pulmonary arterial smooth muscle cells contributes to hypoxic pulmonary hypertension[J]. Eur J Pharmacol,2018,818:84-95.
[80]   SHEIKH A Q , LIGHTHOUSE J K , GREIF D M . Recapitulation of developing artery muscularization in pulmonary hypertension[J]. Cell Rep,2014,6(5):809-817.
[81]   MALESKER M A , MORROW L E . Monitoring immunosuppressive medications for lung disease and lung transplantation: the time is now[J]. Chest,2012,142(5):1081-1082.
[82]   SHEIKH A Q , MISRA A , ROSAS I O , et al . Smooth muscle cell progenitors are primed to muscularize in pulmonary hypertension[J]. Sci Transl Med,2015,7(308):308ra159.
[83]   ZABINI D , GRANTON E , HU Y , et al . Loss of SMAD3 promotes vascular remodeling in pulmonary arterial hypertension via MRTF disinhibition[J]. Am J Respir Crit Care Med,2018,197(2):244-260.
[1] Baboo Kalianee Devi, CHEN Zhengyun, ZHANG Xinmei. Progress on medical treatment in the management of adenomyosis[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 142-147.
[2] WU Binbin, YANG Yi. Biomarkers of cardiac surgery-associated acute kidney injury: a narrative review[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 224-229.
[3] YANG Kun, HU Xiaosheng. Research progress on miR-21 in heart diseases[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 214-218.
[4] XU Li, XU Ming, TONG Xiangmin. Effects of aerobic glycolysis on pathogenesis and drug resistance of non-Hodgkin lymphoma[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 219-223.
[5] ZHAO Shihao,ZHANG Xue,KE Yuehai. Progress on correlation between cell senescence and idiopathic pulmonary fibrosis[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 111-115.
[6] SONG Fangjun,GUO Hongtao. Progress on structural biology of voltage-gated ion channels[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 25-33.
[7] SHAO Ying,WANG Jiadan,ZHU Danyan. Rictor regulates mitochondrial calcium signaling in mouse embryo stem cell-derived cardiomyocytes[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 65-74.
[8] SHI Jing,FENG Jue. New inhibitors targeting bacterial RNA polymerase[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 44-49.
[9] SUN Boqiang,WANG Qiongyan,PAN Dongli. Mechanisms of herpes simplex virus latency and reactivation[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 89-101.
[10] SHEN Xiameng,LYU Weiguo. Research advances on the role of exosomes in chemotherapy resistance of ovarian cancer[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 116-120.
[11] HONG Feifan,LI Yuezhou. Application of mechanosensitive channels in sonogenetics[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 34-38.
[12] XIANG Yilang,WU Ziheng,ZHANG Hongkun. Progress on in situ fenestration during thoracic endovascular aortic repair[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 617-622.
[13] CAO Liqin,SHI Jimin. Graft failure in allogeneic hematopoietic stem cell trans-plantation[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 651-658.
[14] TANG Hexiao,BAI Yuquan,SHEN Wulin,ZHAO Jinping. Research progress on interleukin-6 in lung cancer[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 659-664.
[15] ZHAO Huihui,TANG Huifang. Research progress on composite animal models of inflammatory bowel disease based on gene knockout[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 665-670.