Please wait a minute...
J Zhejiang Univ (Med Sci)  2018, Vol. 47 Issue (5): 480-486    DOI: 10.3785/j.issn.1008-9292.2018.10.06
    
Protective effect of curcumin on dopamine neurons in Parkinson's disease and its mechanism
WU You(),LIANG Shunli,XU Bin*(),ZHANG Rongbo,XU Linsheng
Department of Neurology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
Download: HTML( 6 )   PDF(1263KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To investigate the effect of curcumin on dopamine neurons in Parkinson's disease (PD) and its mechanism. Methods: SH-SY5Y human neuroblastoma cells were treated with 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to establish the PD cell model. The model cells were treated with curcumin and/or autophagy inhibitor 3-MA. After 48 h of drug treatment, the number of surviving dopamine neurons was detected by tyrosine hydroxylase immunofluorescence method. Western blotting was used to detect protein expression of α-Synuclein (α-Syn), transcription factor EB (TFEB) and autophagy-related proteins lysosome-associated membrane protein 2A (LAMP2A) and microtubule-associated protein 1 light chain 3-Ⅱ(LC3-Ⅱ); RT-PCR was used to detect mRNA expression of α-Syn. Results: Compared with MPTP model group, curcumin increased the number of surviving dopamine neurons(P < 0.01), decreased both protein expression and mRNA expression of α-Syn (all P < 0.01), and increased protein expression of TFEB, LAMP2A and LC3-Ⅱ (all P < 0.01). When curcumin and 3-MA were given concurrently, the number of surviving dopamine neurons, protein expression of TFEB, LAMP2A and LC3-Ⅱ increased (P < 0.05 or P < 0.01), and both protein expression and mRNA expression of α-Syn decreased (P < 0.05 or P < 0.01) compared with MPTP model group; but the number of surviving dopamine neurons and protein expression of LAMP2A and LC3-Ⅱ decreased compared with curcumin group (all P < 0.05). Conclusion: Curcumin exerts protective effect on dopamine neurons in PD, which may be associated with enhancing autophagy and promoting the clearance of α-Syn.



Key wordsCurcumin/pharmacology      Parkinson disease/physiopathology      Neurons/metabolism      α-Synuclein      Transcription factors      Autophagy      Disease models, animal     
Received: 20 March 2018      Published: 23 January 2019
CLC:  R742  
Corresponding Authors: XU Bin     E-mail: youyou1983520@sina.com;xubin2008.love@163.com
Cite this article:

WU You,LIANG Shunli,XU Bin,ZHANG Rongbo,XU Linsheng. Protective effect of curcumin on dopamine neurons in Parkinson's disease and its mechanism. J Zhejiang Univ (Med Sci), 2018, 47(5): 480-486.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2018.10.06     OR     http://www.zjujournals.com/med/Y2018/V47/I5/480


姜黄素保护帕金森病多巴胺能神经元的机制研究

目的: 观察姜黄素对帕金森病细胞模型中多巴胺能神经元的保护作用并探讨其作用机制。方法: 人神经母细胞瘤SH-SY5Y细胞采用1-甲基-4-苯基-四氢吡啶离子(MPTP)处理建立帕金森病细胞模型,进一步设立姜黄素干预、自噬抑制剂3-甲基腺嘌呤(3-MA)干预以及姜黄素和3-MA同时干预组。各组细胞在药物处理48 h后分别进行酪氨酸羟化酶(TH)免疫荧光染色观察多巴胺能神经元存活数;蛋白质印迹法检测α-突触核蛋白(α-Syn)、转录因子EB(TFEB)、自噬相关蛋白多克隆抗溶酶体相关膜蛋白2A(LAMP2A)和微管相关蛋白1轻链3-Ⅱ(LC3-Ⅱ)的蛋白表达;RT-PCR检测α-Syn的mRNA表达。结果: 与模型对照组比较,姜黄素组多巴胺能神经元存活数增加(P < 0.01),α-Syn蛋白及mRNA表达减少(均P < 0.01),TFEB以及自噬蛋白LAMP2A和LC3-Ⅱ表达上调(均P < 0.01);3-MA和姜黄素同时干预组多巴胺能神经元存活数增加(P < 0.05),α-Syn蛋白及mRNA表达减少(P < 0.05或P < 0.01),TFEB、LAMP2A和LC3-Ⅱ蛋白表达上调(均P < 0.01)。与姜黄素组比较,姜黄素和3-MA同时干预组多巴胺能神经元存活数减少,LC3-Ⅱ和LAMP2A蛋白表达减少(均P < 0.05)。结论: 姜黄素可激活细胞自噬功能促进α-Syn自噬性清除,从而减轻MPTP所致的多巴胺能神经元损伤。


关键词: 姜黄素/药理学,  帕金森病/病理生理学,  神经元/代谢,  α突触核蛋白,  转录因子,  自噬,  疾病模型, 动物 
Fig 1 Number and status of surviving dopamine neurons by tyrosine hydroxylase (TH) immunofluorescence staining
Fig 2 Protein and mRNA expression of α-Syn in each group (n=6)
Fig 3 Protein expression of LAMP2A and LC3-Ⅱ in each group (n=6)
Fig 4 Protein expression of transcription factor EB (TFEB) in each group (n=6)
[1]   BENSKEY M J , PEREZ R G , MANFREDSSON F P . The contribution of alpha synuclein to neuronal survival and function-implications for Parkinson's disease[J]. J Neurochem, 2016, 137 (3): 331- 359
doi: 10.1111/jnc.2016.137.issue-3
[2]   LEHRI-BOUFALA S, OUIDJA M O, BARBIER-CHASSEFIèRE V, et al. New roles of glycosaminoglycans in α-synuclein aggregation in a cellular model of Parkinson disease[J/OL]. PLoS One, 2015, 10(1): e0116641.
[3]   SALA G , MARINIG D , AROSIO A et al. Role of chaperone-mediated autophagy dysfunctions in the pathogenesis of Parkinson's disease[J]. Front Mol Neurosci, 2016, 9:157
[4]   KHUWAJA G , KHAN M M , ISHRAT T et al. Neuroprotective effects of curcumin on 6-hydroxydopamine-induced Parkinsonism in rats:behavioral, neurochemical and immunohistochemical studies[J]. Brain Res, 2011, 1368:254- 263
doi: 10.1016/j.brainres.2010.10.023
[5]   PANDAREESH M D , SHRIVASH M K , NAVEEN KUMAR H N et al. Curcumin monoglucoside shows improved bioavailability and mitigates rotenone induced neurotoxicity in cell and drosophila models of Parkinson's disease[J]. Neurochem Res, 2016, 41 (11): 3113- 3128
doi: 10.1007/s11064-016-2034-6
[6]   AQQARWAL B B , HARIKUMAR K B . Potential therapeutic effect of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, meta-bolic, autoimmune and neoplastic diseases[J]. Int J Biochem Cell Biol, 2009, 41 (1): 40- 59
doi: 10.1016/j.biocel.2008.06.010
[7]   HE X J , UCHIDA K , MEGUMI C et al. Dietary curcumin supplementation attenuates 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) neurotoxicity in C57BL mice[J]. J Toxicol Pathol, 2015, 28 (4): 197- 206
doi: 10.1293/tox.2015-0020
[8]   SPINELLI K J, OSTERBERG V R, MESHUL C K, et al. Curcumin treatment improves motor behavior in α-synuclein transgenic mice[J/OL]. PLoS One, 2015, 10(6): e0128510.
[9]   MANSOURI Z , SABETKASAEI M , MORADI F et al. Curcumin has neuroprotection effect on homocysteine rat model of Parkinson[J]. J Mol Neurosci, 2012, 47 (2): 234- 242
[10]   SONG S , NIE Q , LI Z et al. Curcumin improves neurofunctions of 6-OHDA-induced parkinsonian rats[J]. Pathol Res Pract, 2016, 212 (4): 247- 251
doi: 10.1016/j.prp.2015.11.012
[11]   KHATRI D K , JUVEKAR A R . Neuroprotective effect of curcumin as evinced by abrogation of rotenone-induced motor deficits, oxidative and mitochondrial dysfunctions in mouse model of Parkinson's disease[J]. Pharmacol Biochem Behav, 2016, 150-151:39- 47
doi: 10.1016/j.pbb.2016.09.002
[12]   CUI Q , LI X , ZHU H . Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway[J]. Mol Med Rep, 2016, 13 (2): 1381- 1388
doi: 10.3892/mmr.2015.4657
[13]   SIDDIQUE Y H , NAZ F , JYOTI S . Effect of curcumin on lifespan, activity pattern, oxidative stress, and apoptosis in the brains of transgenic Drosophila model of Parkinson's disease[J]. Biomed Res Int, 2014, 2014:606928
[14]   VAN DER MERWE C , VAN DYK H C , ENGELBRECHT L et al. Curcumin rescues a PINK1 knock down SH-SY5Y cellular model of Parkinson's disease from mitochondrial dysfunction and cell death[J]. Mol Neurobiol, 2017, 54 (4): 2752- 2762
doi: 10.1007/s12035-016-9843-0
[15]   U?UZ A C , ?Z A , NAZIRO?LU M . Curcumin inhibits apoptosis by regulating intracellular calcium release, reactive oxygen species and mitochondrial depolarization levels in SH-SY5Y neuronal cells[J]. J Recept Signal Transduct Res, 2016, 36 (4): 395- 401
doi: 10.3109/10799893.2015.1108337
[16]   JAISIN Y , THAMPITHAK A , MEESARAPEE B et al. CurcuminⅠ protects the dopaminergic cell line SH-SY5Y from 6-hydroxydopamine-induced neurotoxicity through attenuation of p53-mediated apoptosis[J]. Neurosci Lett, 2011, 489 (3): 192- 196
doi: 10.1016/j.neulet.2010.12.014
[17]   BOLLIMPELLI V S , KUMAR P , KUMARI S et al. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity[J]. Neurochem Int, 2016, 95:37- 45
doi: 10.1016/j.neuint.2016.01.006
[18]   HARRIS H , RUBINSZTEIN D C . Control of autophagy as a therapy for neurodegenerative disease[J]. Nat Rev Neurol, 2011, 8 (2): 108- 117
[19]   MALAGELADA C , JIN Z H , JACKSON-LEWIS V et al. Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson's disease[J]. J Neurosci, 2010, 30 (3): 1166- 1175
doi: 10.1523/JNEUROSCI.3944-09.2010
[20]   QIAN H , YANG Y , WANG X . Curcumin enhanced Adriamycin-induced human liver-derived hepatoma G2 cell death through activation of mitochondria-mediated apoptosis and autophagy[J]. Eur J Pharm Sci, 2011, 43 (3): 125- 131
doi: 10.1016/j.ejps.2011.04.002
[21]   THAYYULLATHIL F , RAHMAN A , PALLICHANKANDY S et al. ROS-dependent prostate apoptosis response-4(Par-4) up-regulation and ceramide generation are the prime signaling events associated with curcumin-induced autophagic cell death in human malignant glioma[J]. FEBS Open Bio, 2014, 4:763- 776
doi: 10.1016/j.fob.2014.08.005
[22]   JAROONWITCHAWAN T , CHAICHAROENAU-DOMRUNG N , NAMKAEW J et al. Curcumin attenuates paraquat-induced cell death in human neuroblastoma cells through modulating oxidative stress and autophagy[J]. Neurosci Lett, 2017, 636:40- 47
doi: 10.1016/j.neulet.2016.10.050
[23]   KLIONSKY D J , ABDELMOHSEN K , ABE A et al. Guidelines for the use and interpretation of assays for monitoring autophagy(3rd edition)[J]. Autophagy, 2016, 12 (1): 1- 222
doi: 10.1080/15548627.2015.1100356
[24]   WANG C , ZHANG X , TENG Z et al. Downregulation of PI3K/Akt/mTOR signaling pathway in curcumin-induced autophagy in APP/PS1 double transgenic mice[J]. Eur J Pharmacol, 2014, 740:312- 320
doi: 10.1016/j.ejphar.2014.06.051
[25]   EBRAHIMI-FAKHARI D , WAHLSTER L . Restoring impaired protein metabolism in Parkinson's disease-TFEB-mediated autophagy as a novel therapeutic target[J]. Mov Disord, 2013, 28 (10): 1346
doi: 10.1002/mds.25601
[26]   DECRESSAC M , BJ?RKLUND A . TFEB:Pathogenic role and therapeutic target in Parkinson disease[J]. Autophagy, 2013, 9 (8): 1244- 1246
doi: 10.4161/auto.25044
[27]   SONG J X , SUN Y R , PELUSO I et al. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition[J]. Autophagy, 2016, 12 (8): 1372- 1389
doi: 10.1080/15548627.2016.1179404
[28]   ZHANG J , WANG J , XU J et al. Curcumin targets the TFEB-lysosome pathway for induction of autophagy[J]. Oncotarget, 2016, 7 (46): 75659- 75671
[29]   XIAO K , JIANG J , GUAN C et al. Curcumin induces autophagy via activating the AMPK signaling pathway in lung adenocarcinoma cells[J]. J Pharmacol Sci, 2013, 123 (2): 102- 109
doi: 10.1254/jphs.13085FP
[30]   LI W , ZHOU Y , YANG J et al. Curcumin induces apoptotic cell death and protective autophagy in human gastric cancer cells[J]. Oncol Rep, 2017, 37 (6): 2459- 3466
[31]   YANG C , MA X , WANG Z et al. Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation[J]. Drug Des Devel Ther, 2017, 11:431- 439
doi: 10.2147/DDDT
[32]   LI X, FENG K, LI J, et al. Curcumin inhibits apoptosis of chondrocytes through activation ERK1/2 signaling pathways induced autophagy[J/OL]. Nutrients, 2017, 9(4): E414.
[33]   HEGER M , VAN GOLEN R F , BROEKGAARDEN M et al. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer[J]. Pharmacol Rev, 2013, 66 (1): 222- 307
[34]   SCHNEIDER C , GORDON O N , EDWARDS R L et al. Degradation of curcumin:from mechanism to biological implications[J]. J Agric Food Chem, 2015, 63 (35): 7606- 7614
doi: 10.1021/acs.jafc.5b00244
[1] ZHU Feng,FAN Miao,XU Ziwei,CAI Yiting,CHEN Yizhen,YU Shuang,ZENG Linghui. Neuroprotective effect of rapamycin against Parkinson's disease in mice[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 465-472.
[2] WANG Qingmei,SHU Min,XU Qianzi,XIE Yiyi,RUAN Shengzhe,WANG Jianda,ZENG Linghui. Effects of Honokiol on cognitive function in mice with kainic acid-induced epilepsy[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 450-456.
[3] LYU Dandan,YING Kejing. Regulatory role of autophagy in development of pulmonary artery hypertension[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 207-212.
[4] DING Jingjing,LU Yunbi. Research progress on receptor interacting proteins in inflammation[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 89-96.
[5] ZHANG Binbin, WU Meiling, LIU Luna, ZHU Yangbin, KAI Jiejing, ZENG Linghui. Inhibiting mammalian target of rapamycin signaling pathway improves cognitive function in mice with chronic cerebral ischemia[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 405-412.
[6] ZHENG Yanrong,ZHANG Xiangnan,CHEN Zhong. Research progress on mechanism of Nix-mediated mitophagy[J]. J Zhejiang Univ (Med Sci), 2017, 46(1): 92-96.
[7] HOU Shifang, WANG Zhihua, WANG Jun, HE Zhixu, SHU Liping. Myeloid and erythroid hematopoietic transcription factor expression decline after knockdown of lmna genes in zebrafish embryos[J]. J Zhejiang Univ (Med Sci), 2016, 45(6): 620-625.
[8] LIN Xiangang, CHEN Yenong, LIU Zhuqing. Effect and its molecular mechanisms of curcumin on pulmonary artery smooth muscle cells in rat model with chronic obstructive pulmonary disease[J]. J Zhejiang Univ (Med Sci), 2016, 45(5): 469-476.
[9] LIU Jun, HE Xiaole, ZHEN Ping, ZHOU Shenghu, LI Xusheng. Inflammatory cytokines and oxidative stress markers in the inhibition of osteoarthritis by curcumin[J]. J Zhejiang Univ (Med Sci), 2016, 45(5): 461-468.
[10] LIU Qiaoyun, SHEN Hanming, XIA Dajing. Zinc and autophagy[J]. J Zhejiang Univ (Med Sci), 2016, 45(3): 308-314.
[11] CHEN Zi-bo, CHANG Lin-lin, ZHOU Tian-yi, WANG Dan-dan, CHEN Ying, ZHAO Ping-ge, ZHU Hong. Sunitinib suppresses migration of ovarian cancer cells through negative modulation of TGF-β-mediated epithelial-mesenchymal transition[J]. J Zhejiang Univ (Med Sci), 2015, 44(5): 479-485.
[12] ZHU Hui-hui, ZHAO Xi-bao, HU Wei-wei, CHEN Wei-lin. Research progress on ubiquitin-specific protease in antiviral immunity[J]. J Zhejiang Univ (Med Sci), 2015, 44(5): 578-583.
[13] CAO Jian-ping, XIA Da-jing. Progress on association between autophagy and cancer[J]. J Zhejiang Univ (Med Sci), 2015, 44(2): 204-210.
[14] LIU Zhi-xian, WEI Er-qing, LU Yun-bi. Research progress on epithelial-mesenchymal transition in cancer recurrence and metastasis[J]. J Zhejiang Univ (Med Sci), 2015, 44(2): 211-216.
[15] JIN Wen-yuan, ZHAO Zheng-yan. Progress on association between low-density lipoprotein receptor and metabolic syndrome[J]. J Zhejiang Univ (Med Sci), 2015, 44(1): 101-107.