Please wait a minute...
J Zhejiang Univ (Med Sci)  2018, Vol. 47 Issue (5): 465-472    DOI: 10.3785/j.issn.1008-9292.2018.10.04
Neuroprotective effect of rapamycin against Parkinson's disease in mice
ZHU Feng(),FAN Miao,XU Ziwei,CAI Yiting,CHEN Yizhen,YU Shuang,ZENG Linghui*()
School of Medicine, Zhejiang University City College, Hangzhou 310015, China
Download: HTML( 9 )   PDF(1247KB)
Export: BibTeX | EndNote (RIS)      


Objective: To investigate the effect of rapamycin on Parkinson's disease (PD) and its underlying mechanism in mice. Methods: Sixty SPF adult male C57BL/6 mice were randomly divided into control group, model group and treatment group. 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine(MPTP) was used to induce Parkinson's disease in model group and treatment group. All mice were trained to cross the runway and were subjected to computer-assisted CatWalk. The numbers of tyrosine hydroxylase positive (TH+) neurons in the substantia nigra (SN) were assessed by unbiased stereology using the optical fractionator method; protein expression was detected by Western blot analysis; and glutathione peroxidase (GSH-Px), malondialdehyde (MDA) and superoxide dismutase (SOD) were detected by spectrophotometry. Results: In the model group, a decrease in stride rate and an increase in variation of stance and swing were noted by CatWalk system (P < 0.05 or P < 0.01); the numbers of TH+ neurons decreased (P < 0.01); expression of p-Akt, p-S6K, p-S6 and p-ULK increased (all P < 0.01); LC3-Ⅱ/Ⅰ ratio decreased (P < 0.01); MDA level was elevated while the levels of SOD and GSH-PX were reduced (all P < 0.01). Compared with the model group, after treated with rapamycin, the abnormal behavior including the stride length, variation of stance and swing and step patterns induced by MPTP were all improved (P < 0.05 or P < 0.01); the numbers of TH+ neurons increased (P < 0.05); the expression of p-Akt, p-S6K, p-S6 and p-ULK was suppressed (all P < 0.01); the LC3-Ⅱ/Ⅰ ratio was upregulated (P < 0.05); MDA level decreased while the levels of GSH-Px and SOD increased (all P < 0.01). Conclusion: Rapamycin inhibits the activation of mTOR pathway, which contributes to protect against the loss of dopaminergic neurons and provide behavioral improvements in mice with Parkinson's disease. These results are partially related to the ability of rapamycin in inducing autophagy and reducing oxidative stress.

Key wordsParkinson disease/prevention & control      Sirolimus/pharmacology      Signal transduction      Autophagy      Oxidative stress     
Received: 15 September 2018      Published: 23 January 2019
CLC:  R742  
Corresponding Authors: ZENG Linghui     E-mail:;
Cite this article:

ZHU Feng,FAN Miao,XU Ziwei,CAI Yiting,CHEN Yizhen,YU Shuang,ZENG Linghui. Neuroprotective effect of rapamycin against Parkinson's disease in mice. J Zhejiang Univ (Med Sci), 2018, 47(5): 465-472.

URL:     OR


目的: 探索雷帕霉素对帕金森病模型小鼠的保护作用及机制。方法: 60只SPF级成年健康雄性C57/B6小鼠随机分为对照组、模型组和治疗组。模型组和治疗组采用1-甲基4-苯基-1、2、3、6-四氢吡啶(MPTP)诱导建立帕金森病模型。治疗组在第7天MPTP注射后1 h开始腹腔注射雷帕霉素(3 mg/kg,1次/d,共7 d),模型组和对照组均予腹腔注射等体积的溶剂。CatWalk步态分析系统分析小鼠运动功能;免疫荧光法检测小鼠脑黑质部酪氨酸羟化酶(TH)阳性神经元数量;蛋白质印迹法检测mTOR信号通路相关蛋白及自噬相关蛋白的表达;试剂盒测定谷胱甘肽过氧化物酶(GSH-Px)、丙二醛和超氧化物歧化酶(SOD)等氧化应激产物的浓度。结果: 与对照组比较,模型组小鼠行走速度和步频变慢,速度变化率增加(P < 0.05或P < 0.01),被系统识别的落脚模式减少;小鼠脑黑质中TH阳性染色神经元数量减少,Akt、S6K、S6及UNC-51样激酶(ULK)磷酸化水平升高,LC3-Ⅱ/Ⅰ比值降低,氧化应激相关的SOD和GSH-Px含量减少而丙二醛含量增加(均P < 0.01)。与模型组比较,治疗组步态规律性恢复,落脚模式被系统识别的数量增加,行走速度和步频加快,速度变化率减小(P < 0.05或P < 0.01);小鼠脑黑质中TH阳性染色神经元数量增加,mTOR信号通路相关蛋白及ULK磷酸化水平降低,LC3-Ⅱ/Ⅰ比值升高,SOD、GSH-Px含量增加而丙二醛含量减少(P < 0.05或P < 0.01)。结论: 雷帕霉素可以抑制帕金森病小鼠mTOR信号通路活性,通过增强大脑黑质部自噬活性和降低氧化应激水平来减轻多巴胺能神经元损伤,改善帕金森病小鼠行为学异常。

关键词: 帕金森病/预防和控制,  西罗莫司/药理学,  信号传导,  自噬,  氧化性应激 
Fig 1 Representative illuminations of footprint view in three groups
Fig 2 Representative illuminations of footfall patterns in three groups
Fig 3 The run duration, cadence and walking speed variation in three groups (n=8)
Fig 4 Tyrosine hydroxylase(TH)-immunoreactive neurons in the compact part of substantia nigra in three groups
Fig 5 Phosphorylation levels of Akt, S6K and S6 in three groups(n=6)
Fig 6 Expression of ULK and LC3 in three groups (n=6)
($\bar x \pm s$)
组别 n SOD(U/mg) GSH-Px(U/mg) 丙二醛(nmol/mg)
与对照组比较,*P < 0.05,* *P < 0.01;与模型组比较,##P < 0.01.SOD:超氧化物歧化酶;GSH-Px:谷胱甘肽过氧化物酶.
对照组 6 107±22 94±16 3.0±1.7
模型组 6 58±7** 38±10** 7.5±1.3**
治疗组 6 89±5## 61±11*## 4.0±1.6*#
Tab 1 Levels of oxidative stress products in three groups
[1]   BELLUCCI A , MERCURI N B , VENNERI A et al. Review:Parkinson's disease:from synaptic loss to connectome dysfunction[J]. Neuropathol Appl Neurobiol, 2016, 42 (1): 77- 94
doi: 10.1111/nan.2016.42.issue-1
[2]   MELKI R . Alpha-synuclein and the prion hypothesis in Parkinson's disease[J]. Rev Neurol(Paris), 2018, 174 (9): 644- 652
doi: 10.1016/j.neurol.2018.08.002
[3]   LEWITT P A , FAHN S . Levodopa therapy for Parkinson disease:a look backward and forward[J]. Neurology, 2016, 86 (14 Suppl 1): S3- S12
[4]   RASCOL O , BROOKS D J , MELAMED E et al. Rasagiline as an adjunct to levodopa in patients with Parkinson's disease and motor fluctuations (LARGO, Lasting effect in Adjunct therapy with Rasagiline Given Once daily, study):a randomised, double-blind, parallel group trial[J]. Lancet, 2005, 365 (9463): 947- 954
doi: 10.1016/S0140-6736(05)71083-7
[5]   SARKAR S , RAYMICK J , IMAM S . Neuroprotective and therapeutic strategies against Parkinson's disease:recent perspectives[J]. Int J Mol Sci, 2016, 17 (6): pii:E904
doi: 10.3390/ijms17060904
[6]   HANG L , BASIL A H , LIM K L . Nutraceuticals in Parkinson's disease[J]. Neuromolecular Med, 2016, 18 (3): 306- 321
doi: 10.1007/s12017-016-8398-6
[7]   GIUGNI J C , OKUN M S . Treatment of advanced Parkinson's disease[J]. Curr Opin Neurol, 2014, 27 (4): 450- 460
doi: 10.1097/WCO.0000000000000118
[8]   MAIESE K , CHONG Z Z , SHANG Y C et al. mTOR:on target for novel therapeutic strategies in the nervous system[J]. Trends Mol Med, 2013, 19 (1): 51- 60
doi: 10.1016/j.molmed.2012.11.001
[9]   TIMMONS S , COAKLEY M F , MOLONEY A M et al. Akt signal transduction dysfunction in Parkinson's disease[J]. Neurosci Lett, 2009, 467 (1): 30- 35
doi: 10.1016/j.neulet.2009.09.055
[10]   YAL?NKAYA N , HAYTURAL H , BILGI? B et al. Expression changes of genes associated with apoptosis and survival processes in Parkinson's disease[J]. Neurosci Lett, 2016, 615:72- 77
doi: 10.1016/j.neulet.2016.01.029
[11]   CANAL M , MARTíN-FLORES N , PéREZ-SISQUéS L et al. Loss of NEDD4 contributes to RTP801 elevation and neuron toxicity:implications for Parkinson's disease[J]. Oncotarget, 2016, 7 (37): 58813- 58831
[12]   NACARELLI T , AZAR A , SELL C . Aberrant mTOR activation in senescence and aging:a mitochondrial stress response?[J]. Exp Gerontol, 2015, 68:66- 70
doi: 10.1016/j.exger.2014.11.004
[13]   WEN Z , ZHANG J , TANG P et al. Overexpression of miR-185 inhibits autophagy and poptosis of dopaminergic neurons by regulating the AMPK/mTOR signaling pathway in Parkinson's disease[J]. Mol Med Rep, 2018, 17 (1): 131- 137
[14]   CACCAMO A , MAJUMDER S , RICHARDSON A et al. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-p and Tau:effects on cognitive impairments[J]. J Biol Chem, 2010, 285 (17): 13107- 13120
doi: 10.1074/jbc.M110.100420
[15]   MOORS T E , HOOZEMANS J J , INGRASSIA A et al. Therapeutic potential of autophagy-enhancing agents in Parkinson's disease[J]. Mol Neurodegener, 2017, 12 (1): 11
doi: 10.1186/s13024-017-0154-3
[16]   ZHANG Y, HE X, WU X, et al. Rapamycin upregulates glutamate transporter and IL-6 expression in astrocytes in a mouse model of Parkinson's disease[J/OL]. Cell Death Dis, 2017, 8(2): e2611.
[17]   FANG C , GU L , SMERIN D et al. The Interrelation between reactive oxygen species and autophagy in neurological disorders[J]. Oxid Med Cell Longev, 2017, 2017:8495160
[18]   ANDERSON F L , COFFEY M M , BERWIN B L et al. Inflammasomes:an emerging mechanism translating environmental toxicant exposure into neuroinflammation in Parkinson's disease[J]. Toxicol Sci, 2018, 166 (1): 3- 15
[19]   DIJKSTRA A A, INGRASSIA A, DE MENEZES R X, et al. Evidence for immune response, axonal dysfunction and reduced endocytosis in the substantia Nigra in early stage Parkinson's disease[J/OL]. PLoS One, 2015, 10(6): e0128651.
[20]   BOLAND B , KUMAR A , LEE S et al. Autophagy induction and autophagosome clearance in neurons:relationship to autophagic pathology in Alzheimer's disease[J]. J Neurosci, 2008, 28 (27): 6926- 6937
doi: 10.1523/JNEUROSCI.0800-08.2008
[21]   MENZIES F M , FLEMING A , CARICASOLE A . Autophagy and neurodegeneration:pathogenic mechanisms and therapeutic opportunities[J]. Neuron, 2017, 93 (5): 1015- 1034
doi: 10.1016/j.neuron.2017.01.022
[22]   RADAD K , MOLDZIO R , AL-SHRAIM M et al. Recent advances in autophagy-based neuroprotection[J]. Expert Rev Neurother, 2015, 15 (2): 195- 205
doi: 10.1586/14737175.2015.1002087
[23]   SAXTON R A , SABATINI D M . mTOR signaling in growth, metabolism, and disease[J]. Cell, 2017, 169 (2): 361- 371
[24]   HERAS-SANDOVAL D , PéREZ-ROJAS J M , HERNáNDEZ-DAMIáN J et al. The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration[J]. Cell Signal, 2014, 26 (12): 2694- 2701
doi: 10.1016/j.cellsig.2014.08.019
[25]   PERLUIGI M , DI DOMENICO F , BUTTERFIELD D A . mTOR signaling in aging and neurodegeneration:at the crossroad between metabolism dysfunction and impairment of autophagy[J]. Neurobiol Dis, 2015, 84:39- 49
doi: 10.1016/j.nbd.2015.03.014
[26]   JENWITHEESUK A , NOPPARAT C , MUKDA S et al. Melatonin regulates aging and neurodegeneration through energy metabolism, epigenetics, autophagy and circadian rhythm pathways[J]. Int J Mol Sci, 2014, 15 (9): 16848- 16884
doi: 10.3390/ijms150916848
[27]   RYSKALIN L , LIMANAQI F , FRATI A et al. mTOR-related brain dysfunctions in neuropsychiatric disorders[J]. Int J Mol Sci, 2018, 19 (8): pii:E2226
doi: 10.3390/ijms19082226
[28]   MAIESE K , CHONG Z Z , SHANG Y C et al. mTOR:on target for novel therapeutic strategies in the nervous system[J]. Trends Mol Med, 2013, 19 (1): 51- 60
doi: 10.1016/j.molmed.2012.11.001
[29]   PUSPITA L , CHUNG S Y , SHIM J W . Oxidative stress and cellular pathologies in Parkinson's disease[J]. Mol Brain, 2017, 10 (1): 53
[30]   NACARELLI T , AZAR A , SELL C . Aberrant mTOR activation in senescence and aging:A mitochondrial stress response?[J]. Exp Gerontol, 2015, 68:66- 70
doi: 10.1016/j.exger.2014.11.004
[31]   PRASAD K N . Oxidative stress, pro-inflammatory cytokines, and antioxidants regulate expression levels of microRNAs in Parkinson's disease[J]. Curr Aging Sci, 2017, 10 (3): 177- 184
[32]   RAVIKUMAR B , DUDEN R , RUBINSZTEIN D C . Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy[J]. Hum Mol Genet, 2002, 11 (9): 1107- 1117
doi: 10.1093/hmg/11.9.1107
[33]   SINGH A K , SINGH S , GAR G et al. Rapamycin alleviates oxidative stress-induced damage in rat erythrocytes[J]. Biochem Cell Biol, 2016, 94 (5): 471- 479
doi: 10.1139/bcb-2016-0048
[34]   SINGH A K , KASHYAP M P , TRIPATHI V K et al. Neuroprotection through rapamycin-induced activation of autophagy and PI3K/Akt1/mTOR/CREB signaling against amyloid-β-induced oxidative stress, synaptic/neurotransmission dysfunction, and neurodegeneration in adult rats[J]. Mol Neurobiol, 2017, 54 (8): 5815- 5828
doi: 10.1007/s12035-016-0129-3
[1] WU You,LIANG Shunli,XU Bin,ZHANG Rongbo,XU Linsheng. Protective effect of curcumin on dopamine neurons in Parkinson's disease and its mechanism[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 480-486.
[2] WANG Qingmei,SHU Min,XU Qianzi,XIE Yiyi,RUAN Shengzhe,WANG Jianda,ZENG Linghui. Effects of Honokiol on cognitive function in mice with kainic acid-induced epilepsy[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 450-456.
[3] LIANG Gang, NIU Yumiao, LI Yihan, Wei Anyi, DONG Jingyin, ZENG Linghui. Rapamycin treatment starting at 24 h after cerebral ischemia/reperfusion exhibits protective effect on brain injury in rats[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 443-449.
[4] HE Jiayi,ZHANG Xinmei. Research progress on oxidative stress in pathogenesis of endometriosis[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 419-425.
[5] QIAN Bo,ZHANG Yanling,MO Xuming. Research progress on transcription factors and signal pathways involved in congenital esophageal atresia[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 239-243.
[6] LYU Dandan,YING Kejing. Regulatory role of autophagy in development of pulmonary artery hypertension[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 207-212.
[7] PAN Zongfu,FANG Qilu,ZHANG Yiwen,LI Li,HUANG Ping. Identification of key pathways and drug repurposing for anaplastic thyroid carcinoma by integrated bioinformatics analysis[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 187-193.
[8] DING Jingjing,LU Yunbi. Research progress on receptor interacting proteins in inflammation[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 89-96.
[9] LIU Tingting,WANG Lingxiao,YANG Xiaohui,YAO Zhiqing,CAI Huizhen. TLR/NF-κB independent signaling pathway in TNF-α suppression of diabetic MyD88-knockout mice after Lycium barbarum polysaccharides administration[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 35-40.
[10] WEI Zhenlong,SHI Wengui,CHEN Keming,ZHOU Jian,WANG Minggang. Icaritin promotes maturation and mineralization of mouse osteoblast MC3T3-E1 cells through CXCR4/SDF-1 signal pathway[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 571-577.
[11] ZHANG Binbin, WU Meiling, LIU Luna, ZHU Yangbin, KAI Jiejing, ZENG Linghui. Inhibiting mammalian target of rapamycin signaling pathway improves cognitive function in mice with chronic cerebral ischemia[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 405-412.
[12] HE Yujie,PAN Jianping. Progress on mechanisms for pathogensto evade NOD-like receptor and Toll-like receptor signaling pathways[J]. J Zhejiang Univ (Med Sci), 2017, 46(2): 218-224.
[13] ZHENG Yanrong,ZHANG Xiangnan,CHEN Zhong. Research progress on mechanism of Nix-mediated mitophagy[J]. J Zhejiang Univ (Med Sci), 2017, 46(1): 92-96.
[14] FENG Sheng, CHEN Jijun, ZHENG Yichun. Research progress on the effect of glucocorticoid receptor signaling pathways in bladder cancer[J]. J Zhejiang Univ (Med Sci), 2016, 45(6): 655-660.
[15] LIU Jun, HE Xiaole, ZHEN Ping, ZHOU Shenghu, LI Xusheng. Protective effect of diosgenin on chondrocytes mediated by JAK2/STAT3 signaling pathway in mice with osteoarthritis[J]. J Zhejiang Univ (Med Sci), 2016, 45(5): 453-460.