Please wait a minute...
J Zhejiang Univ (Med Sci)  2018, Vol. 47 Issue (2): 207-212    DOI: 10.3785/j.issn.1008-9292.2018.04.16
    
Regulatory role of autophagy in development of pulmonary artery hypertension
LYU Dandan(),YING Kejing*()
Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
Download: HTML( 14 )   PDF(958KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Pulmonary arterial hypertension (PAH) is a multi-etiological chronic disease characterized by a progressive elevation in pulmonary resistance and vascular remodeling. Its pathogenesis is complicated. Recently, emerging researches suggest that autophagy, as a self-protection mechanism maintaining the intracellular environment homeostasis in eukaryotes, participate in the occurrence and development of various types of PAH. Autophagy can regulate the survival, apoptosis of pulmonary vascular wall cells and secretion of vasoactive substances and inflammatory cytokines, thus influencing pulmonary vascular homeostasis. Some drugs based on regulating autophagy activity can effectively improve the prognosis of PAH. In this article, the regulatory role of autophagy on the development of pulmonary hypertension is reviewed to provide insight into PAH and its treatment.



Key wordsHypertension, pulmonary/pathology      Autophagy/physiology      Pulmonary artery/pathology      Endothelium, vascular/drug effects      Review     
Received: 07 January 2018      Published: 24 July 2018
CLC:  R543.2  
Corresponding Authors: YING Kejing     E-mail: 21618303@zju.edu.cn;3197061@zju.edu.cn
Cite this article:

LYU Dandan,YING Kejing. Regulatory role of autophagy in development of pulmonary artery hypertension. J Zhejiang Univ (Med Sci), 2018, 47(2): 207-212.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2018.04.16     OR     http://www.zjujournals.com/med/Y2018/V47/I2/207


自噬在肺动脉高压发生和发展中的调节作用

肺动脉高压是一类多病因导致肺血管重构、肺动脉阻力进行性增高的慢性疾病,其发病机制错综复杂。近年研究发现,自噬作为真核生物维持细胞内环境稳定的一种自我保护机制,参与多种类型肺动脉高压的发生和发展。自噬通过调节肺血管壁细胞的生存、凋亡以及血管活性物质和炎症介质分泌等病理变化影响肺血管稳态。一些能调节自噬活性的药物对肺动脉高压的治疗有很好的临床应用价值。本文综述了自噬在肺动脉高压发生和发展中的调节作用,为临床治疗提供新的思路。


关键词: 高血压, 肺性/病理学,  自噬/生理学,  肺动脉/病理学,  内皮, 血管/药物作用,  综述 
[1]   PESTO S , BEGIC Z , PREVLJAK S et al. Pulmonary hypertension-new trends of diagnostic and therapy[J]. Med Arch, 2016, 70 (4): 303- 307
doi: 10.5455/medarh.
[2]   HUBER L C , BYE H , BROCK M . The pathogenesis of pulmonary hypertension-an update[J]. Swiss Med Wkly, 2015, 145 w14202
[3]   KUWANO K , ARAYA J , HARA H et al. Cellular senescence and autophagy in the pathogenesis of chronic obstructive pulmonary disease(COPD) and idiopathic pulmonary fibrosis(IPF)[J]. Respir Investig, 2016, 54 (6): 397- 406
doi: 10.1016/j.resinv.2016.03.010
[4]   MIZUMURA K , CLOONAN S , CHOI M E et al. Autophagy:friend or foe in lung disease?[J]. Ann Am Thorac Soc, 2016, 13 (Suppl 1): S40- S47
[5]   ABADA A , ELAZAR Z . Getting ready for building:signaling and autophagosome biogenesis[J]. EMBO Rep, 2014, 15 (8): 839- 852
doi: 10.15252/embr.201439076
[6]   KIM Y C , GUAN K L . mTOR:a pharmacologic target for autophagy regulation[J]. J Clin Invest, 2015, 125 (1): 25- 32
doi: 10.1172/JCI73939
[7]   PAN C C , KUMAR S , SHAH N et al. Endoglin regulation of Smad2 function mediates Beclin1 expression and endothelial autophagy[J]. J Biol Chem, 2015, 290 (24): 14884- 14892
doi: 10.1074/jbc.M114.630178
[8]   THIYAGARAJAN V , SIVALINGAM K S , VISWANADHA V P et al. 16-hydroxy-cleroda-3, 13-dien-16, 15-olide induced glioma cell autophagy via ROS generation and activation of p38 MAPK and ERK-1/2[J]. Environ Toxicol Pharmacol, 2016, 45 202- 211
doi: 10.1016/j.etap.2016.06.005
[9]   LIM C J , LEE Y M , KANG S G et al. Aquatide activation of SIRT1 reduces cellular senescence through a SIRT1-FOXO1-autophagy axis[J]. Biomol Ther(Seoul), 2017, 25 (5): 511- 518
doi: 10.4062/biomolther.2017.119
[10]   GUO F , LI X , PENG J et al. Autophagy regulates vascular endothelial cell eNOS and ET-1 expression induced by laminar shear stress in an ex vivo perfused system[J]. Ann Biomed Eng, 2014, 42 (9): 1978- 1988
doi: 10.1007/s10439-014-1033-5
[11]   BHARATH L P , MUELLER R , LI Y et al. Impairment of autophagy in endothelial cells prevents shear-stress-induced increases in nitric oxide bioavailability[J]. Can J Physiol Pharmacol, 2014, 92 (7): 605- 612
doi: 10.1139/cjpp-2014-0017
[12]   SHAN H , GUO D , LI X et al. From autophagy to senescence and apoptosis in Angiotensin Ⅱ-treated vascular endothelial cells[J]. APMIS, 2014, 122 (10): 985- 992
doi: 10.1111/apm.2014.122.issue-10
[13]   CHEN F , CHEN B , XIAO F Q et al. Autophagy protects against senescence and apoptosis via the RAS-mitochondria in high-glucose-induced endothelial cells[J]. Cell Physiol Biochem, 2014, 33 (4): 1058- 1074
doi: 10.1159/000358676
[14]   SHAPIRO S , TRAIGER G L , TURNER M et al. Sex differences in the diagnosis, treatment, and outcome of patients with pulmonary arterial hypertension enrolled in the registry to evaluate early and long-term pulmonary arterial hypertension disease management[J]. Chest, 2012, 141 (2): 363- 373
doi: 10.1378/chest.10-3114
[15]   LAHM T , PETRACHE I . LC3 as a potential therapeutic target in hypoxia-induced pulmonary hypertension[J]. Autophagy, 2012, 8 (7): 1146- 1147
doi: 10.4161/auto.20520
[16]   O'DONNELL E , FLORAS J S , HARVEY P J . Estrogen status and the renin angiotensin aldosterone system[J]. Am J Physiol Regul Integr Comp Physiol, 2014, 307 (5): R498- R500
doi: 10.1152/ajpregu.00182.2014
[17]   JIANG P , LAN Y , LUO J et al. Rapamycin promoted thrombosis and platelet adhesion to endothelial cells by inducing membrane remodeling[J]. BMC Cell Biol, 2014, 15 7
doi: 10.1186/1471-2121-15-7
[18]   FENG W , CHANG C , LUO D et al. Dissection of autophagy in human platelets[J]. Autophagy, 2014, 10 (4): 642- 651
doi: 10.4161/auto.27832
[19]   MAUGERI N , CAMPANA L , GAVINA M et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps[J]. J Thromb Haemost, 2014, 12 (12): 2074- 2088
doi: 10.1111/jth.2014.12.issue-12
[20]   YAU J W , SINGH K K , HOU Y et al. Endothelial-specific deletion of autophagy-related 7(ATG7) attenuates arterial thrombosis in mice[J]. J Thorac Cardiovasc Surg, 2017, 154 (3): 978- 988
doi: 10.1016/j.jtcvs.2017.02.058
[21]   FU J , CHEN Y F , ZHAO X et al. Targeted delivery of pulmonary arterial endothelial cells overexpressing interleukin-8 receptors attenuates monocrotaline-induced pulmonary vascular remodeling[J]. Arterioscler Thromb Vasc Biol, 2014, 34 (7): 1539- 1547
doi: 10.1161/ATVBAHA.114.303821
[22]   YANG M , DENG C , WU D et al. The role of mononuclear cell tissue factor and inflammatory cytokines in patients with chronic thromboembolic pulmonary hypertension[J]. J Thromb Thrombolysis, 2016, 42 (1): 38- 45
doi: 10.1007/s11239-015-1323-2
[23]   SAITOH T , FUJITA N , JANG M H et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production[J]. Nature, 2008, 456 (7219): 264- 268
doi: 10.1038/nature07383
[24]   TAL M C , SASAI M , LEE H K et al. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling[J]. Proc Natl Acad Sci U S A, 2009, 106 (8): 2770- 2775
doi: 10.1073/pnas.0807694106
[25]   CHEN M L , YI L , JIN X et al. Resveratrol attenuates vascular endothelial inflammation by inducing autophagy through the cAMP signaling pathway[J]. Autophagy, 2013, 9 (12): 2033- 2045
doi: 10.4161/auto.26336
[26]   HU Y , LOU J , MAO Y Y et al. Activation of MTOR in pulmonary epithelium promotes LPS-induced acute lung injury[J]. Autophagy, 2016, 12 (12): 2286- 2299
doi: 10.1080/15548627.2016.1230584
[27]   SAKAO S , HAO H , TANABE N et al. Endothelial-like cells in chronic thromboembolic pulmonary hypertension:crosstalk with myofibroblast-like cells[J]. Respir Res, 2011, 12 109
doi: 10.1186/1465-9921-12-109
[28]   STENMARK K R , FRID M , PERROS F . Endothelial-to-mesenchymal transition:an evolving paradigm and a promising therapeutic target in PAH[J]. Circulation, 2016, 133 (18): 1734- 1737
doi: 10.1161/CIRCULATIONAHA.116.022479
[29]   TARASEVICIENE-STEWART L , KASAHARA Y , ALGER L et al. Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension[J]. FASEB J, 2001, 15 (2): 427- 438
doi: 10.1096/fj.00-0343com
[30]   YANG J , YAO S . JNK-Bcl-2/Bcl-xL-Bax/Bak pathway mediates the crosstalk between matrine-induced autophagy and apoptosis via interplay with Beclin 1[J]. Int J Mol Sci, 2015, 16 (10): 25744- 25758
doi: 10.3390/ijms161025744
[31]   DALVI P , SHARMA H , CHINNAPPAN M et al. Enhanced autophagy in pulmonary endothelial cells on exposure to HIV-Tat and morphine:role in HIV-related pulmonary arterial hypertension[J]. Autophagy, 2016, 12 (12): 2420- 2438
doi: 10.1080/15548627.2016.1238551
[32]   SALABEI J K , CUMMINS T D , SINGH M et al. PDGF-mediated autophagy regulates vascular smooth muscle cell phenotype and resistance to oxidative stress[J]. Biochem J, 2013, 451 (3): 375- 388
doi: 10.1042/BJ20121344
[33]   ZHENG Y H , TIAN C , MENG Y et al. Osteopontin stimulates autophagy via integrin/CD44 and p38 MAPK signaling pathways in vascular smooth muscle cells[J]. J Cell Physiol, 2012, 227 (1): 127- 135
doi: 10.1002/jcp.22709
[34]   HA J M , YUN S J , KIM Y W et al. Platelet-derived growth factor regulates vascular smooth muscle phenotype via mammalian target of rapamycin complex 1[J]. Biochem Biophys Res Commun, 2015, 464 (1): 57- 62
doi: 10.1016/j.bbrc.2015.05.097
[35]   LEE S J , SMITH A , GUO L et al. Autophagic protein LC3B confers resistance against hypoxia-induced pulmonary hypertension[J]. Am J Respir Crit Care Med, 2011, 183 (5): 649- 658
doi: 10.1164/rccm.201005-0746OC
[36]   SAVAI R , AL-TAMARI H M , SEDDING D et al. Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension[J]. Nat Med, 2014, 20 (11): 1289- 1300
doi: 10.1038/nm.3695
[37]   SALABEI J K , BALAKUMARAN A , FREY J C et al. Verapamil stereoisomers induce antiproliferative effects in vascular smooth muscle cells via autophagy[J]. Toxicol Appl Pharmacol, 2012, 262 (3): 265- 272
doi: 10.1016/j.taap.2012.04.036
[38]   LONG L , YANG X , SOUTHWOOD M et al. Chloroquine prevents progression of experimental pulmonary hypertension via inhibition of autophagy and lysosomal bone morphogenetic protein type Ⅱ receptor degradation[J]. Circ Res, 2013, 112 (8): 1159- 1170
doi: 10.1161/CIRCRESAHA.111.300483
[39]   TENG R J , DU J , WELAK S et al. Cross talk between NADPH oxidase and autophagy in pulmonary artery endothelial cells with intrauterine persistent pulmonary hypertension[J]. Am J Physiol Lung Cell Mol Physiol, 2012, 302 (7): L651- L663
doi: 10.1152/ajplung.00177.2011
[40]   YANDRAPALLI S , TARIQ S , KUMAR J et al. Chronic thromboembolic pulmonary hypertension:epidemiology, diagnosis, and management[J]. Cardiol Rev, 2018, 26 (2): 62- 72
[41]   DENG C , WU D , YANG M et al. The role of tissue factor and autophagy in pulmonary vascular remodeling in a rat model for chronic thromboembolic pulmonary hypertension[J]. Respir Res, 2016, 17 (1): 65
doi: 10.1186/s12931-016-0383-y
[1] DU Xiaotian,OUYANG Hongwei. Correlation between histone methylation level and pathological development of osteoarthritis[J]. J Zhejiang Univ (Med Sci), 2019, 48(6): 682-687.
[2] LI Xue,LI Wenbin,FENG Shilan,WANG Rong. Research progress on mechanism in adaptation of hemoglobin to plateau hypoxia[J]. J Zhejiang Univ (Med Sci), 2019, 48(6): 674-681.
[3] DING Yidan,LI Wenbin,WANG Rong,ZHANG Jianchun. Research progress on the effects of plateau hypoxia on blood-brain barrier structure and drug permeability[J]. J Zhejiang Univ (Med Sci), 2019, 48(6): 668-673.
[4] KONG Limin,LU Jingyi,ZHU Huajian,ZHANG Jiankang. Research progress on selective immunoproteasome inhibitors[J]. J Zhejiang Univ (Med Sci), 2019, 48(6): 688-694.
[5] XU Jiajun,SHU Qiang. Application of 3D printing techniques in treatment of congenital heart disease[J]. J Zhejiang Univ (Med Sci), 2019, 48(5): 573-579.
[6] ZHANG Junhao,JIN Jinghua,YANG Wei. Autophagy regulates the function of vascular smooth muscle cells in the formation and rupture of intracranial aneurysms[J]. J Zhejiang Univ (Med Sci), 2019, 48(5): 552-559.
[7] CHEN Dianyu,QI Ming. Research progress on uniparental disomy in cancer[J]. J Zhejiang Univ (Med Sci), 2019, 48(5): 560-566.
[8] LIN Jing,CHEN Zhimin. Research progress on early identification of severe adenovirus pneumonia in children[J]. J Zhejiang Univ (Med Sci), 2019, 48(5): 567-572.
[9] HUANG Shumin,ZHAO Zhengyan. Advances in newborn screening and immune system reconstitution of severe combined immunodeficiency[J]. J Zhejiang Univ (Med Sci), 2019, 48(4): 351-357.
[10] CHEN Guangjie,WANG Xiaohao,TANG Daxing. Progress on evaluation, diagnosis and management of disorders of sex development[J]. J Zhejiang Univ (Med Sci), 2019, 48(4): 358-366.
[11] ZHANG Jianmin. Advances in surgical treatment of ischemic cerebrovascular disease[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 233-240.
[12] WU Yuxing, ZHANG Shihong, CHEN Zhong. The roles of habenula and related neural circuits in neuropsychiatric diseases[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 310-317.
[13] ZHANG Yunzhu, ZHU Chunpeng, LU Xinliang. Advances in serum biomarkers for early diagnosis of gastric cancer[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 326-333.
[14] ZHU Ziling, TAN Jing, DENG Hong. Nucleus translocation of membrane/cytoplasm proteins in tumor cells[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 318-325.
[15] Baboo Kalianee Devi,CHEN Zhengyun,ZHANG Xinmei. Progress on medical treatment in the management of adenomyosis[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 142-147.