Please wait a minute...
J Zhejiang Univ (Med Sci)  2018, Vol. 47 Issue (1): 89-96    DOI: 10.3785/j.issn.1008-9292.2018.02.13
Research progress on receptor interacting proteins in inflammation
DING Jingjing(),LU Yunbi*()
Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
Download: HTML( 23 )   PDF(1149KB)
Export: BibTeX | EndNote (RIS)      


Receptor interacting proteins (RIPs) are a group of threonine/serine protein kinases, which have relatively conserved kinase domains and different non-kinase domains, and are involved in physiological and pathological processes including innate immune response and inflammation. In recent years, many studies have shown that RIPs mediate cell necroptosis and triggers inflammatory responses by participating in the formation of necrotic complexes, and RIP1 and RIP3 are particularly closely related to cell necrosis. Cell necroptosis is a well-regulated way of cell death. The death signal that transmit through the TNF signaling pathway and the Toll-like receptor signaling pathway can recruit and phosphorylate mixed lineage kinase domain-like protein (MLKL), and eventually leading to disintegration and death of cells, and the release of cells intercellular material after cell disintegration can trigger an inflammatory reaction. This review mainly focuses on the major signaling pathways and molecular mechanisms that are involved in the mediation of necrosis and inflammation by RIPs. It also highlights the importance of RIPs in the development of inflammatory diseases and their potentials as therapeutic targets for inflammatory diseases.

Key wordsProtein kinases      Transcription factors      Signal transduction      Toll-like receptors      Inflammation      Necrosis      Apoptosis      Review     
Received: 20 November 2017      Published: 12 June 2018
CLC:  R392  
Corresponding Authors: LU Yunbi     E-mail:;
Cite this article:

DING Jingjing,LU Yunbi. Research progress on receptor interacting proteins in inflammation. J Zhejiang Univ (Med Sci), 2018, 47(1): 89-96.

URL:     OR



关键词: 蛋白激酶类,  转录因子,  信号传导,  Toll样受体,  炎症,  坏死,  细胞凋亡,  综述 
Fig 1 Receptor interacting proteins and their structures
Fig 2 The role of receptor interacting proteins in TNF signaling pathway
Fig 3 The role of receptor interacting proteins in Toll-like receptor signaling pathway
[1]   OGAWA Y , CALHOUN W J . The role of leukotrienes in airway inflammation[J]. J Allergy Clin Immunol, 2006, 118 (4): 789- 798
doi: 10.1016/j.jaci.2006.08.009
[2]   LAMKANFI M , DIXIT V M . Manipulation of host cell death pathways during microbial infections[J]. Cell Host Microbe, 2010, 8 (1): 44- 54
doi: 10.1016/j.chom.2010.06.007
[3]   SONENSHINE D E , MACALUSO K R . Microbial invasion vs. tick immune regulation[J]. Front Cell Infect Microbiol, 2017, 7 390
doi: 10.3389/fcimb.2017.00390
[4]   NOGUSA S , SLIFKER M J , INGRAM J P et al. RIPK3 is largely dispensable for RIG-I-like receptor-and type Ⅰ interferon-driven transcriptional responses to influenza A virus in murine fibroblasts[J]. PLoS One, 2016, 11 (7): e0158774
doi: 10.1371/journal.pone.0158774
[5]   SALEH D , DEGTEREV A . Emerging roles for RIPK1 and RIPK3 in pathogen-induced cell death and host immunity[J]. Curr Top Microbiol Immunol, 2017, 403 37- 75
[6]   SILKE J , RICKARD J A , GERLIC M . The diverse role of RIP kinases in necroptosis and inflammation[J]. Nat Immunol, 2015, 16 689- 697
doi: 10.1038/ni.3206
[7]   PEIXOTO M S , DE OLIVEIRA GALV?O M F , DE MEDEIROS S R B . Cell death pathways of particulate matter toxicity[J]. Chemosphere, 2017, 188 32- 48
doi: 10.1016/j.chemosphere.2017.08.076
[8]   MORIWAKI K , CHAN F K . Necroptosis-independent signaling by the RIP kinases in inflammation[J]. Cell Mol Life Sci, 2016, 73 (11-12): 2325- 2334
doi: 10.1007/s00018-016-2203-4
[9]   NEWTON K . RIPK1 and RIPK3:critical regulators of inflammation and cell death[J]. Trends Cell Biol, 2015, 25 (6): 347- 353
doi: 10.1016/j.tcb.2015.01.001
[10]   ZHANG D , LIN J , HAN J . Receptor-interacting protein (RIP) kinase family[J]. Cell Mol Immunol, 2010, 7 (4): 243- 249
doi: 10.1038/cmi.2010.10
[11]   CABAL-HIERRO L , O'DWYER P J . TNF Signaling through RIP1 kinase enhances SN38-induced death in colon adenocarcinoma[J]. Mol Cancer Res, 2017, 15 (4): 395- 404
doi: 10.1158/1541-7786.MCR-16-0329
[12]   DE ALMAGRO M C , GONCHAROV T , NEWTON K et al. Cellular IAP proteins and LUBAC differentially regulate necrosome-associated RIP1 ubiquitination[J]. Cell Death Dis, 2015, 6 e1800
doi: 10.1038/cddis.2015.158
[13]   ALVAREZ S E , HARIKUMAR K B , HAIT N C et al. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2[J]. Nature, 2010, 465 (7301): 1084- 1088
doi: 10.1038/nature09128
[14]   LIN X , CHEN Q , HUANG C et al. CYLD promotes TNF-alpha-induced cell necrosis mediated by RIP-1 in human lung cancer cells[J]. Mediators Inflamm, 2016, 2016 1542786
[15]   GUO X , YIN H , CHEN Y et al. TAK1 regulates caspase 8 activation and necroptotic signaling via multiple cell death checkpoints[J]. Cell Death Dis, 2016, 7 (9): e2381
doi: 10.1038/cddis.2016.294
[16]   SALEH D , NAJJAR M , ZELIC M et al. Kinase activities of RIPK1 and RIPK3 can direct IFN-beta synthesis induced by lipopolysaccharide[J]. J Immunol, 2017, 198 (11): 4435- 4447
doi: 10.4049/jimmunol.1601717
[17]   YANG S , WANG B , TANG L S et al. Pellino3 targets RIP1 and regulates the pro-apoptotic effects of TNF-alpha[J]. Nat Commun, 2013, 4 2583
doi: 10.1038/ncomms3583
[18]   JIN G , LAN Y , HAN F et al. Smac mimetic induced caspase independent necroptosis requires RIP1 in breast cancer[J]. Mol Med Rep, 2016, 13 (1): 359- 366
doi: 10.3892/mmr.2015.4542
[19]   NAJJAR M , SALEH D , ZELIC M et al. RIPK1 and RIPK3 kinases promote cell-death-independent inflammation by Toll-like receptor 4[J]. Immunity, 2016, 45 (1): 46- 59
doi: 10.1016/j.immuni.2016.06.007
[20]   RUIZ J , KANAGAVELU S , FLORES C et al. Systemic activation of TLR3-dependent TRIF signaling confers host defense against gram-negative bacteria in the intestine[J]. Front Cell Infect Microbiol, 2015, 5 105
[21]   LAWLOR K E , FELTHAM R , YABAL M et al. XIAP loss triggers RIPK3-and caspase-8-driven IL-1beta activation and cell death as a consequence of TLR-MyD88-induced cIAP1-TRAF2 degradation[J]. Cell Rep, 2017, 20 (3): 668- 682
doi: 10.1016/j.celrep.2017.06.073
[22]   WANG X , MAJUMDAR T , KESSLER P et al. STING requires the adaptor TRIF to trigger innate immune responses to microbial infection[J]. Cell Host Microbe, 2017, 21 (6): 788
doi: 10.1016/j.chom.2017.05.007
[23]   KANG S , FERNANDES-ALNEMRI T , ROGERS C et al. Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3[J]. Nat Commun, 2015, 6 7515
doi: 10.1038/ncomms8515
[24]   HUMPHRIES F , YANG S , WANG B et al. RIP kinases:key decision makers in cell death and innate immunity[J]. Cell Death Differ, 2015, 22 (2): 225- 236
doi: 10.1038/cdd.2014.126
[25]   NIKSERESHT S , KHODAGHOLI F , NATEGH M et al. RIP1 inhibition rescues from LPS-induced RIP3-mediated programmed cell death, distributed energy metabolism and spatial memory impairment[J]. J Mol Neurosci, 2015, 57 (2): 219- 230
doi: 10.1007/s12031-015-0609-3
[26]   HE S , HUANG S , SHEN Z . Biomarkers for the detection of necroptosis[J]. Cell Mol Life Sci, 2016, 73 (11-12): 2177- 2181
doi: 10.1007/s00018-016-2192-3
[27]   OROZCO S , YATIM N , WERNER M R et al. RIPK1 both positively and negatively regulates RIPK3 oligomerization and necroptosis[J]. Cell Death Differ, 2014, 21 (10): 1511- 1521
doi: 10.1038/cdd.2014.76
[28]   ZHANG J , YANG Y , HE W et al. Necrosome core machinery:MLKL[J]. Cell Mol Life Sci, 2016, 73 (11-12): 2153- 2163
doi: 10.1007/s00018-016-2190-5
[29]   O'DONNELL M A , HASE H , LEGARDA D et al. NEMO inhibits programmed necrosis in an NFkappaB-independent manner by restraining RIP1[J]. PLoS One, 2012, 7 e41238
doi: 10.1371/journal.pone.0041238
[30]   WU X N , YANG Z H , WANG X K et al. Distinct roles of RIP1-RIP3 hetero-and RIP3-RIP3 homo-interaction in mediating necroptosis[J]. Cell Death Differ, 2014, 21 (11): 1709- 1720
doi: 10.1038/cdd.2014.77
[31]   NOGUSA S , THAPA R J , DILLON C P et al. RIPK3 activates parallel pathways of MLKL-driven necroptosis and FADD-mediated apoptosis to protect against influenza A virus[J]. Cell Host Microbe, 2016, 20 (1): 13- 24
doi: 10.1016/j.chom.2016.05.011
[32]   SHEN C , WANG C , HAN S et al. Aldehyde dehydrogenase 2 deficiency negates chronic low-to-moderate alcohol consumption-induced cardio-protecion possibly via ROS-dependent apoptosis and RIP1/RIP3/MLKL-mediated necroptosis[J]. Biochim Biophys Acta, 2017, 1863 (8): 1912- 1918
doi: 10.1016/j.bbadis.2016.11.016
[33]   SUMI H , INAZUKA M , MORIMOTO M et al. An inhibitor of apoptosis protein antagonist T-3256336 potentiates the antitumor efficacy of the Nedd8-activating enzyme inhibitor pevonedistat (TAK-924/MLN4924)[J]. Biochem Biophys Res Commun, 2016, 480 (3): 380- 386
doi: 10.1016/j.bbrc.2016.10.058
[34]   MATHUR A , HAYWARD J A , MAN S M . Molecular mechanisms of inflammasome signaling[J]. J Leukoc Biol, 2018, 103 (2): 233- 257
[35]   LAWLOR K E , KHAN N , MILDENHALL A et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL[J]. Nat Commun, 2015, 6 6282
doi: 10.1038/ncomms7282
[36]   LAMKANFI M , DIXIT V M . Mechanisms and functions of inflammasomes[J]. Cell, 2014, 157 (5): 1013- 1022
doi: 10.1016/j.cell.2014.04.007
[37]   MORIWAKI K , BERTIN J , GOUGH P J et al. A RIPK3-caspase 8 complex mediates atypical pro-IL-1beta processing[J]. J Immunol, 2015, 194 (4): 1938- 1944
doi: 10.4049/jimmunol.1402167
[38]   CHI W , HUA X , CHEN X et al. Mitochondrial DNA oxidation induces imbalanced activity of NLRP3/NLRP6 inflammasomes by activation of caspase-8 and BRCC36 in dry eye[J]. J Autoimmun, 2017, 80 65- 76
doi: 10.1016/j.jaut.2017.02.006
[39]   WONG W W , VINCE J E , LALAOUI N et al. cIAPs and XIAP regulate myelopoiesis through cytokine production in an RIPK1-and RIPK3-dependent manner[J]. Blood, 2014, 123 (16): 2562- 2572
doi: 10.1182/blood-2013-06-510743
[40]   CHAVEZ-VALDEZ R , MARTIN L J , FLOCK D L et al. Necrostatin-1 attenuates mitochondrial dysfunction in neurons and astrocytes following neonatal hypoxia-ischemia[J]. Neuroscience, 2012, 219 192- 203
doi: 10.1016/j.neuroscience.2012.05.002
[41]   LIN J , LI H , YANG M et al. A role of RIP3-mediated macrophage necrosis in atherosclerosis development[J]. Cell Rep, 2013, 3 (1): 200- 210
doi: 10.1016/j.celrep.2012.12.012
[42]   SCHOCK S N , YOUNG J A , HE T H et al. Deletion of FADD in macrophages and granulocytes results in RIP3-and MyD88-dependent systemic inflammation[J]. PLoS One, 2015, 10 (4): e0124391
doi: 10.1371/journal.pone.0124391
[43]   NEGRONI A , COLANTONI E , PIERDOMENICO M et al. RIP3 AND pMLKL promote necroptosis-induced inflammation and alter membrane permeability in intestinal epithelial cells[J]. Dig Liver Dis, 2017, 49 (11): 1201- 1210
doi: 10.1016/j.dld.2017.08.017
[44]   LI J X , FENG J M , WANG Y et al. The B-Raf(V600E) inhibitor dabrafenib selectively inhibits RIP3 and alleviates acetaminophen-induced liver injury[J]. Cell Death Dis, 2014, 5 e1278
doi: 10.1038/cddis.2014.241
[45]   MURAKAMI Y , MATSUMOTO H , ROH M et al. Programmed necrosis, not apoptosis, is a key mediator of cell loss and DAMP-mediated inflammation in dsRNA-induced retinal degeneration[J]. Cell Death Differ, 2014, 21 (2): 270- 277
doi: 10.1038/cdd.2013.109
[46]   OFENGEIM D , MAZZITELLI S , ITO Y et al. RIPK1 mediates a disease-associated microglial response in Alzheimer's disease[J]. Proc Natl Acad Sci U S A, 2017, 114 (41): E8788- E8797
doi: 10.1073/pnas.1714175114
[1] JIANG Xiyi, LI Lu, TANG Huijuan, CHEN Tianhui. Multiple risk factors prediction models for high risk population of colorectal cancer[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 194-200.
[2] PAN Zongfu, FANG Qilu, ZHANG Yiwen, LI Li, HUANG Ping. Identification of key pathways and drug repurposing for anaplastic thyroid carcinoma by integrated bioinformatics analysis[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 187-193.
[3] HE Yuxian, ZHENG Liangrong. Effect of spinal cord stimulation on myocardial ischemia/infarction[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 201-206.
[4] LYU Dandan, YING Kejing. Regulatory role of autophagy in development of pulmonary artery hypertension[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 207-212.
[5] LING Jing,LI Hongrui,CHEN Weilin. Protein ubiquitination on the regulation of inflammatory bowel disease[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 82-88.
[6] LIU Tingting,WANG Lingxiao,YANG Xiaohui,YAO Zhiqing,CAI Huizhen. TLR/NF-κB independent signaling pathway in TNF-α suppression of diabetic MyD88-knockout mice after Lycium barbarum polysaccharides administration[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 35-40.
[7] ZHANG Yuchuan,CHEN Wei. Regulatory effect of Vav1 on T cells and its relation to clinical diseases[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 75-81.
[8] WANG Jiajing,GU Haiying. Research progress on genotyping of Helicobacter pylori[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 97-103.
[9] TANG Huijuan,JIANG Xiyi,LOU Jianlin,CHEN Tianhui. Methodology for survival assessment of cancer patients using population-based cancer registration data[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 104-109.
[10] WEI Zhenlong,SHI Wengui,CHEN Keming,ZHOU Jian,WANG Minggang. Icaritin promotes maturation and mineralization of mouse osteoblast MC3T3-E1 cells through CXCR4/SDF-1 signal pathway[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 571-577.
[11] FENG Mengyu,ZHANG Taiping,ZHAO Yupei. Present situation and prospect of enhanced recovery after surgery in pancreatic surgery[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 666-674.
[12] XU Jingjing, TAN Yanbin, ZHANG Minming. Medical imaging in tumor precision medicine: opportunities and challenges[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 455-461.
[13] PAN Jingying, HE Mengye, KE Wei, HU Menglin, WANG Meifang, SHEN Peng. Advances on correlation of PET-CT findings with breast cancer molecular subtypes, treatment response and prognosis[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 473-480.
[14] WANG Mengyan, ZHU Biao. Research progress on genes mutations related to sulfa drug resistance in Pneumocystis jirovecii[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 563-569.
[15] ZHANG Siying, CHEN Feng. Research progress of CT/MRI parametric response map in precision evaluation of therapeutic response of cancer patients[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 468-472.