Please wait a minute...
Journal of ZheJiang University(Medical Science)  2017, Vol. 46 Issue (5): 473-480    DOI: 10.3785/j.issn.1008-9292.2017.10.04
    
Advances on correlation of PET-CT findings with breast cancer molecular subtypes, treatment response and prognosis
PAN Jingying, HE Mengye, KE Wei, HU Menglin, WANG Meifang, SHEN Peng
Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
Download:   PDF(951KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In recent years, PET-CT has an increasing importance in the diagnosis and treatment of breast cancer. PET-CT scan can be used as a noninvasive method for molecular subtyping of breast cancer, and prediction of therapeutic effect and prognosis of patients. Studies have revealed that luminal A subtype has a significantly lower maximum standard intake value (SUVmax) than the other subtypes; triple-negative and human epidermal growth factor receptor 2 (HER2) positive tumors have relatively high SUVmax than luminal B subtype, but the specificity and sensitivity of SUVmax in diagnosis of molecular subtypes are very low, so its clinical application is limited. In predicting the effectiveness of the treatment and the prognosis of the patients, the decreased uptake of fluorodeoxyglucose (FDG) is correlated with better therapeutic effect. In addition, patients with high FDG uptake have worse survival outcomes. New tracers, such as 18F-fluoroestradiol (18F-FES) and[89Zr]trastuzumab play an important role in molecular subtyping of breast cancer. 18F-FES PET-CT can effectively evaluate the estrogen receptor (ER) status of breast cancer and the response to endocrine therapy.[89Zr]trastuzumab PET-CT can evaluate the expression of HER2 and localization of HER2-overexpressing tumors, but their specificities and sensitivities are also low. In this article, we review the recent advances on the correlation of PET-CT findings with molecular subtypes, treatment response and prognosis of breast cancer.



Key wordsBreast neoplasms/pathology      Prognosis      Treatment outcome      Review      Breast neoplasms/radionuclide imaging      Positron-emission tomography     
Received: 07 July 2017      Published: 25 October 2017
CLC:  R445  
  R737.9  
Cite this article:

PAN Jingying, HE Mengye, KE Wei, HU Menglin, WANG Meifang, SHEN Peng. Advances on correlation of PET-CT findings with breast cancer molecular subtypes, treatment response and prognosis. Journal of ZheJiang University(Medical Science), 2017, 46(5): 473-480.

URL:

http://www.zjujournals.com/xueshu/med/10.3785/j.issn.1008-9292.2017.10.04     OR     http://www.zjujournals.com/xueshu/med/Y2017/V46/I5/473


PET-CT与乳腺癌分子病理分型、治疗反应及预后的相关性研究进展

近年来,PET-CT在乳腺癌诊疗中的作用受到越来越多的关注。PET-CT可以作为一种无创诊断乳腺癌分子病理分型的检查手段,并且可以用于预测患者的治疗效果和预后。在乳腺癌的分子病理分型方面,luminal A型乳腺癌氟脱氧葡萄糖(FDG) PET-CT检查最大标准摄取值(SUVmax)最低,其次是luminal B型,最高的是三阴性或人类表皮生长因子受体2(HER2)过表达型乳腺癌,但SUVmax诊断乳腺癌分子病理分型的敏感度和特异度均不高,临床应用价值有限。在预测治疗效果和患者的预后方面,FDG PET-CT检查中FDG摄取值下降越多,治疗效果越好,且标准摄取值越低的患者预后越好。新型示踪剂18F-氟雌二醇(18F-FES)和[89Zr]曲妥珠单抗的应用可为乳腺癌患者的诊疗提供更多的信息。18F-FES PET-CT可以有效评估乳腺癌病灶的雌激素受体(ER)状态及患者对内分泌治疗的反应;[89Zr]曲妥珠单抗PET-CT可以显示HER2阳性的病灶,但是其特异度和敏感度较低。本文对近年来PET-CT在乳腺癌分子病理分型的判断、患者对治疗的应答及预后的预测相关研究进展进行综述。


关键词: 乳腺肿瘤/放射性核素显像,  综述,  治疗结果,  乳腺肿瘤/病理学,  正电子发射断层显像术,  预后 
[[1]]   TOSS A, CRISTOFANILLI M. Molecular characterization and targeted therapeutic approaches in breast cancer[J/OL]. Breast Cancer Res,2015,17:60.
[[2]]   TURAL D, KIVRAK S D, MUTLU H, et al. Is there any relation between PET-CT SUVmax value and prognostic factors in locally advanced breast cancer?[J]. J BUON,2015,20(5):1282-1286.
[[3]]   GARCÍA VICENTE A M, SORIANO CASTREJÓN Á, LEÓN MARTÍN A, et al. Molecular subtypes of breast cancer:metabolic correlation with 18F-FDG PET/CT[J]. Eur J Nucl Med Mol Imaging,2013,40(9):1304-1311.
[[4]]   MIYAKE K K, NAKAMOTO Y, KANAO S, et al. Journal club:diagnostic value of (18)F-FDG PET/CT and MRI in predicting the clinicopathologic subtypes of invasive breast cancer[J]. AJR Am J Roentgenol,2014,203(2):272-279.
[[5]]   KITAJIMA K, FUKUSHIMA K, MIYOSHI Y, et al. Association between 18F-FDG uptake and molecular subtype of breast cancer[J]. Eur J Nucl Med Mol Imaging,2015,42(9):1371-1377.
[[6]]   LEE S S, BAE S K, PARK Y S, et al. Correlation of molecular subtypes of invasive ductal carcinoma of breast with glucose metabolism in FDG PET/CT:based on the recommendations of the St. Gallen Consensus Meeting 2013[J]. Nucl Med Mol Imaging,2017,51(1):79-85.
[[7]]   DUFFY M J, HARBECK N, NAP M, et al. Clinical use of biomarkers in breast cancer:Updated guidelines from the European Group on Tumor Markers(EGTM)[J]. Eur J Cancer,2017,75:284-298.
[[8]]   EVANGELISTA L, BARETTA Z, VINANTE L, et al. Tumour markers and FDG PET/CT for prediction of disease relapse in patients with breast cancer[J]. Eur J Nucl Med Mol Imaging,2011,38(2):293-301.
[[9]]   KOO H R, PARK J S, KANG K W, et al. 18F-FDG uptake in breast cancer correlates with immunohistochemically defined subtypes[J]. Eur Radiol,2014,24(3):610-618.
[[10]]   COKMERT S, TANRIVERDI O, KARAPOLAT I, et al. The maximum standardized uptake value of metastatic site in 18F-FDG PET/CT predicts molecular subtypes and survival in metastatic breast cancer:An Izmir Oncology Group study[J]. J BUON,2016,21(6):1410-1418.
[[11]]   GOLDHIRSCH A, WINER E P, COATES A S, et al. Personalizing the treatment of women with early breast cancer:highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013[J]. Ann Oncol,2013,24(9):2206-2223.
[[12]]   KAJÁRY K, TOKÉS T, DANK M, et al. Correlation of the value of 18F-FDG uptake, described by SUVmax, SUVavg, metabolic tumour volume and total lesion glycolysis, to clinicopathological prognostic factors and biological subtypes in breast cancer[J]. Nucl Med Commun,2015,36(1):28-37.
[[13]]   BASU S, CHEN W, TCHOU J, et al. Comparison of triple-negative and estrogen receptor-positive/progesterone receptor-positive/HER2-negative breast carcinoma using quantitative fluorine-18fluorodeoxyglucose/positron emission tomography imaging parameters:a potentially useful method for disease characterization[J]. Cancer,2008,112(5):995-1000.
[[14]]   GARCÍA VICENTE A M, SORIANO CASTREJÓN A, RELEA CALATAYUD F, et al. 18F-FDG semi-quantitative parameters and biological prognostic factors in locally advanced breast cancer[J]. Rev Esp Med Nucl Imagen Mol,2012,31(6):308-314.
[[15]]   GEMIGNANI M L, PATIL S, SESHAN V E, et al. Feasibility and predictability of perioperative PET and estrogen receptor ligand in patients with invasive breast cancer[J]. J Nucl Med,2013,54(10):1697-1702.
[[16]]   PETERSON L M, MANKOFF D A, LAWTON T, et al. Quantitative imaging of estrogen receptor expression in breast cancer with PET and 18F-fluoroestradiol[J]. J Nucl Med,2008,49(3):367-374.
[[17]]   YANG Z, SUN Y, XU X, et al. The assessment of estrogen receptor status and its intratumoral heterogeneity in patients with breast cancer by using 18F-fluoroestradiol PET/CT[J]. Clin Nucl Med,2017,42(6):421-427.
[[18]]   EVANGELISTA L, GUARNERI V, CONTE P F. 18F-fluoroestradiol positron emission tomography in breast cancer patients:systematic review of the literature & meta-analysis[J]. Curr Radiopharm,2016,9(3):244-257.
[[19]]   MCKEAGE K, PERRY C M. Trastuzumab:a review of its use in the treatment of metastatic breast cancer overexpressing HER2[J]. Drugs,2002,62(1):209-243.
[[20]]   CHANG A J, DESILVA R, JAIN S, et al. 89Zr-radiolabeled trastuzumab imaging in orthotopic and metastatic breast tumors[J]. Pharmaceuticals(Basel),2012,5(1):79-93.
[[21]]   LAFOREST R, LAPI S E, OYAMA R, et al.[89Zr]Trastuzumab:evaluation of radiation dosimetry, safety, and optimal imaging parameters in women with HER2-positive breast cancer[J]. Mol Imaging Biol,2016,18(6):952-959.
[[22]]   GEBHART G, LAMBERTS L E, WIMANA Z, et al. Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine(T-DM1):the ZEPHIR trial[J]. Ann Oncol,2016,27(4):619-624.
[[23]]   NⅡKURA N, LIU J, HAYASHI N, et al. Loss of human epidermal growth factor receptor 2(HER2) expression in metastatic sites of HER2-overexpressing primary breast tumors[J]. J Clin Oncol,2012,30(6):593-599.
[[24]]   ULANER G A, HYMAN D M, ROSS D S, et al. Detection of HER2-positive metastases in patients with HER2-negative primary breast cancer using 89Zr-trastuzumab PET/CT[J]. J Nucl Med,2016,57(10):1523-1528.
[[25]]   MORTIMER J E, DEHDASHTI F, SIEGEL B A, et al. Metabolic flare:indicator of hormone responsiveness in advanced breast cancer[J]. J Clin Oncol,2001,19(11):27-97.
[[26]]   DEHDASHTI F, MORTIMER J E, TRINKAUS K, et al. PET-based estradiol challenge as a predictive biomarker of response to endocrine therapy in women with estrogen-receptor-positive breast cancer[J]. Breast Cancer Res Treat,2009,113(3):509-517.
[[27]]   PETERSON L M, KURLAND B F, SCHUBERT E K, et al. A phase 2 study of 16α-[18F]-fluoro-17β-estradiol positron emission tomography (FES-PET) as a marker of hormone sensitivity in metastatic breast cancer (MBC)[J]. Mol Imaging Biol,2014,16(3):431-440.
[[28]]   LINDEN H M, STEKHOVA S A, LINK J M, et al. Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer[J]. J Clin Oncol,2006,24(18):2793-2799.
[[29]]   VAN KRUCHTEN M, GLAUDEMANS A W J M, DE VRIES E F J, et al. Positron emission tomography of tumour[18F]fluoroestradiol uptake in patients with acquired hormone-resistant metastatic breast cancer prior to oestradiol therapy[J]. Eur J Nucl Med Mol Imaging,2015,42(11):1674-1681.
[[30]]   LIU Q, WANG C, LI P, et al. The role of (18)F-FDG PET/CT and MRI in assessing pathological complete response to neoadjuvant chemotherapy in patients with breast cancer:a systematic review and meta-analysis[J]. Biomed Res Int,2016,37(46):23-32.
[[31]]   WAHL R L, ZASADNY K, HELVIE M, et al. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography:initial evaluation[J]. J Clin Oncol,1993,11(11):2101-2111.
[[32]]   HUMBERT O, COCHET A, COUDERT B, et al. Role of positron emission tomography for the monitoring of response to therapy in breast cancer[J]. Oncologist,2015,20(2):94-104.
[[33]]   STAFFORD S E, GRALOW J R, SCHUBERT E K, et al. Use of serial FDG PET to measure the response of bone-dominant breast cancer to therapy[J]. Acad Radiol,2002,9(8):913-921.
[[34]]   DOSE S J, BADER M, JENICKE L, et al. Early prediction of response to chemotherapy in metastatic breast cancer using sequential 18F-FDG PET[J]. J Nucl Med,2005,46(7):1144-1150.
[[35]]   COUTURIER O, JERUSALEM G, N'GUYEN J M, et al. Sequential positron emission tomography using[18F]fluorodeoxyglucose for monitoring response to chemotherapy in metastatic breast cancer[J]. Clin Cancer Res,2006,12(21):6437-6443.
[[36]]   SHIMODA W, HAYASHI M, MURAKAMI K, et al. The relationship between FDG uptake in PET scans and biological behavior in breast cancer[J]. Breast Cancer,2007,14(3):260-268.
[[37]]   AKIMOTO E, KADOYA T, KAJITANI K, et al. Role of 18F-PET/CT in predicting prognosis of patients with breast cancer after neoadjuvant chemotherapy[J]. Clin Breast Cancer,2017, pii:S1526-8209(17)30037-X.
[[38]]   KIM T H, YOON J K, KANG D K, et al. Correlation between F-18 fluorodeoxyglucose positron emission tomography metabolic parameters and dynamic contrast-enhanced MRI-derived perfusion data in patients with invasive ductal breast carcinoma[J]. Ann Surg Oncol,2015,22(12):3866-3872.
[[39]]   AOGI K, KADOYA T, SUGAWARA Y, et al. Utility of 18F FDG-PET/CT for predicting prognosis of luminal-type breast cancer[J]. Breast Cancer Res Treat,2015,150(1):209-217.
[[40]]   NAKAJO M, KAJIYA Y, KANEKO T, et al. FDG PET/CT and diffusion-weighted imaging for breast cancer:prognostic value of maximum standardized uptake values and apparent diffusion coefficient values of the primary lesion[J]. Eur J Nucl Med Mol Imaging,2010,37(11):2011-2020.
[[41]]   SONG B I, HONG C M, LEE H J, et al. Prognostic value of primary tumor uptake on F-18FDG PET/CT in patients with invasive ductal breast cancer[J]. Nucl Med Mol Imaging,2011,45(2):117-124.
[[42]]   YUE Y, CUI X, BOSE S, et al. Stratifying triple-negative breast cancer prognosis using 18F-FDG-PET/CT imaging[J]. Breast Cancer Res Treat,2015,153(3):607-616.
[1] XU Jingjing, TAN Yanbin, ZHANG Minming. Medical imaging in tumor precision medicine: opportunities and challenges[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 455-461.
[2] ZHANG Siying, CHEN Feng. Research progress of CT/MRI parametric response map in precision evaluation of therapeutic response of cancer patients[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 468-472.
[3] PAN Yao, CHEN Jieyu, YU Risheng. Accurate imaging diagnosis and evaluation of pancreatic cancer[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 462-467.
[4] LI Aijing, PAN Yuning, CHEN Bin, XIA Jianbi, GAN Fang, JIN Yinhua, ZHENG Jianjun. Association of parameters in dynamic contrast-enhanced MRI using reference region model with prognostic factors and molecular subtypes of breast cancer[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 505-510.
[5] HU Jing, ZHENG Lu, ZHANG Huanle, ZHANG Sandian, XU Guodong. Expression and prognostic value of memory T lymphocyte in patients with non-small cell lung cancer following radiotherapy[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 523-528.
[6] WANG Mengyan, ZHU Biao. Research progress on genes mutations related to sulfa drug resistance in Pneumocystis jirovecii[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 563-569.
[7] ZHANG Meixia, ZHOU Ying, ZHANG Ruiting, ZHANG Sheng, LOU Min. Maximal infarct volume to benefit from intravenous thrombolysis and its relation with onset to treatment time[J]. Journal of ZheJiang University(Medical Science), 2017, 46(4): 384-389.
[8] LI Yandie, LU Meiping. Progress on the study of NLRP3 inflammasome in autoinflammatory diseases of children[J]. Journal of ZheJiang University(Medical Science), 2017, 46(4): 449-453.
[9] LAI Zhenzhen, ZHANG Sheng, ZHONG Genlong, ZHANG Xiaocheng, CHEN Qingmeng, LOU Min. Relationship between dynamic CT angiography-based collateral flow evaluation and outcome of patients with stroke induced by acute basilar artery occlusion[J]. Journal of ZheJiang University(Medical Science), 2017, 46(4): 371-376.
[10] FENG Xuewen, CHEN Zhicai, ZHONG Genlong, LOU Min. Safety of tirofiban in patients with acute cerebral infarct receiving endovascular therapy[J]. Journal of ZheJiang University(Medical Science), 2017, 46(4): 397-404.
[11] CHEN Zhiqiang, WANG Ying, MI Xianjun, DUAN Lifeng, CHEN Ang, HUANG Huayong. Volume of 4% neutral buffered formaldehyde affects the results of HER2 gene detected by fluorescence in situ hybridization in primary invasive breast cancer[J]. Journal of ZheJiang University(Medical Science), 2017, 46(4): 439-444.
[12] TIAN Hua, CHEN Yang, ZHAO Jiangang, LIU Daren, LIANG Gang, GONG Weihua, CHEN Li, WU Yulian. Effects of siRNAs targeting CD97 immune epitopes on biological behavior in breast cancer cell line MDA-MB231[J]. Journal of ZheJiang University(Medical Science), 2017, 46(4): 341-348.
[13] WANG Qingsong, ZHANG Sheng, ZHANG Meixia, CHEN Zhicai, LOU Min. Collateral score based on CT perfusion can predict the prognosis of patients with anterior circulation ischemic stroke after thrombectomy[J]. Journal of ZheJiang University(Medical Science), 2017, 46(4): 377-383.
[14] ZOU Lixia, LU Meiping, GUO Li, TENG Liping, XU Yiping, ZHENG Qi. Efficacy and safety of humanized interleukin-6 receptor antibody in treatment of systemic juvenile idiopathic arthritis[J]. Journal of ZheJiang University(Medical Science), 2017, 46(4): 421-426.
[15] SHEN Dan, WANG Fangfang, JIANG Zhou, QU Fan. Long-term effects of polycystic ovary syndrome on the offspring[J]. Journal of ZheJiang University(Medical Science), 2017, 46(3): 300-304.