Please wait a minute...
Journal of ZheJiang University(Medical Science)  2017, Vol. 46 Issue (5): 455-461    DOI: 10.3785/j.issn.1008-9292.2017.10.01
    
Medical imaging in tumor precision medicine: opportunities and challenges
XU Jingjing, TAN Yanbin, ZHANG Minming
Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
Download:   PDF(932KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Tumor precision medicine is an emerging approach for tumor diagnosis, treatment and prevention, which takes account of individual variability of environment, lifestyle and genetic information. Tumor precision medicine is built up on the medical imaging innovations developed during the past decades, including the new hardware, new imaging agents, standardized protocols, image analysis and multimodal imaging fusion technology. Also the development of automated and reproducible analysis algorithm has extracted large amount of information from image-based features. With the continuous development and mining of tumor clinical and imaging databases, the radiogenomics, radiomics and artificial intelligence have been flourishing. Therefore, these new technological advances bring new opportunities and challenges to the application of imaging in tumor precision medicine.



Key wordsArtificial intelligence      Therapy,computer-assisted      Diagnostic imaging      Review      Genomics      Neoplasms     
Received: 30 September 2017      Published: 25 October 2017
CLC:  R445  
  R73  
Cite this article:

XU Jingjing, TAN Yanbin, ZHANG Minming. Medical imaging in tumor precision medicine: opportunities and challenges. Journal of ZheJiang University(Medical Science), 2017, 46(5): 455-461.

URL:

http://www.zjujournals.com/xueshu/med/10.3785/j.issn.1008-9292.2017.10.01     OR     http://www.zjujournals.com/xueshu/med/Y2017/V46/I5/455


影像学在肿瘤精准医疗时代的机遇和挑战

肿瘤的精准医疗是将个体化的差异包括环境、生活方式及基因等信息纳入肿瘤诊断、治疗和预防的新兴方法。在过去的几十年,成像设备和对比剂的更新、成像序列标准化、图像分析技术以及多模态成像融合技术的发展成为肿瘤精准医疗的基础。随着自动化、可重复科学算法的应用,肿瘤影像定量特征的不断提取,肿瘤临床和影像数据库被不断挖掘和开发,影像基因组学、影像组学和影像大数据人工智能得到了蓬勃发展。这些新的技术进步为影像学在肿瘤精准医疗中的应用带来新的机遇和挑战。


关键词: 肿瘤,  人工智能,  诊断显像,  综述,  治疗,计算机辅助,  基因组学 
[[1]]   GARRAWAY L A, VERWEIJ J, BALLMAN K V. Precision oncology:an overview[J]. J Clin Onc,2013,31(15):1803-1805.
[[2]]   MENDELSOHN J. Personalizing oncology:perspectives and prospects[J]. J Clin Oncol,2013,31(15):1904-1911.
[[3]]   CHEN C, HE M, ZHU Y, et al. Five critical elements to ensure the precision medicine[J]. Cancer Metastasis Rev,2015,34(2):313-318.
[[4]]   ABRAMS J, CONLEY B, MOONEY M, et al. National Cancer Institute's Precision Medicine Initiatives for the new National Clinical Trials Network[J]. Am Soc Clin Oncol Educ Book,2014:71-76.
[[5]]   FASS L. Imaging and cancer:a review[J]. Mol Oncol,2008,2(2):115-152.
[[6]]   RENZ D M, BÖTTCHER J, DIEKMANN F, et al. Detection and classification of contrast-enhancing masses by a fully automatic computer-assisted diagnosis system for breast MRI[J]. J Magn Reson Imaging,2012,35(5):1077-1088.
[[7]]   ZENG J Y, YE H H, YANG S X, et al. Clinical application of a novel computer-aided detection system based on three-dimensional CT images on pulmonary nodule[J]. Int J Clin Exp Med,2015,8(9):16077-16082.
[[8]]   WANG S Y, CHEN X X, LI Y, et al. Application of multimodality imaging fusion technology in diagnosis and treatment of malignant tumors under the precision medicine plan[J]. Chin Med J (Engl),2016,129(24):2991-2997.
[[9]]   RUTMAN A M, KUO M D. Radiogenomics:creating a link between molecular diagnostics and diagnostic imaging[J]. Eur J Radiol,2009,70(2):232-241.
[[10]]   SEGAL E, SIRLIN C B, OOI C, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging[J]. Nat Biotechnol,2007,25(6):675-680.
[[11]]   HOBBS S K, SHI G, HOMER R, et al. Magnetic resonance image-guided proteomics of human glioblastoma multiforme[J]. J Magn Reson Imaging,2003,18(5):530-536.
[[12]]   DIEHN M, NARDINI C, WANG D S, et al. Identification of noninvasive imaging surrogates for brain tumor gene-expression modules[J]. Proc Natl Acad Sci U S A,2008,105(13):5213-5218.
[[13]]   CAMPBELL P J, YACHIDA S, MUDIE L J, et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer[J]. Nature,2010,467(7319):1109-1113.
[[14]]   KUO M D, GOLLUB J, SIRLIN C B, et al. Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma[J]. J Vasc Interv Radiol,2007,18(7):821-831.
[[15]]   RIZZO S, PETRELLA F, BUSCARINO V, et al. CT radiogenomic characterization of EGFR, K-RAS, and ALK mutations in non-small cell lung cancer[J]. Eur Radiol,2016,26(1):32-42.
[[16]]   PAEZ J G, JÄNNE P A, LEE J C, et al. EGFR mutations in lung cancer:correlation with clinical response to gefitinib therapy[J]. Science,2004,304(5676):1497-1500.
[[17]]   GEVAERT O, XU J, HOANG C D, et al. Non-small cell lung cancer:identifying prognostic imaging biomarkers by leveraging public gene expression microarray data-methods and preliminary results[J]. Radiology,2012,264(2):387-396.
[[18]]   GROSSMANN P, GUTMAN D A, DUNN W D, et al. Imaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype features in Glioblastoma[J]. BMC Cancer,2016,16:611.
[[19]]   AERTS H J, VELAZQUEZ E R, LEIJENAAR R T, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nat Commun,2014,5:4006.
[[20]]   LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics:extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer,2012,48(4):441-446.
[[21]]   KUMAR V, GU Y, BASU S, et al. Radiomics:the process and the challenges[J]. Magn Reson Imaging,2012,30(9):1234-1248.
[[22]]   GILLIES R J, KINAHAN P E, HRICAK H. Radiomics:images are more than pictures, they are data[J]. Radiology,2016,278(2):563-577.
[[23]]   O'CONNOR O J, PRAKASH P, CRONIN C G, et al. PET/CT in the imaging of ovarian cancer[J]. Front Biosci (Elite Ed),2013,5:141-153.
[[24]]   FAVE X, MACKIN D, YANG J, et al. Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer?[J]. Med Phys,2015,42(12):6784-6797.
[[25]]   GAO X, CHU C, LI Y, et al. The method and efficacy of support vector machine classifiers based on texture features and multi-resolution histogram from (18)F-FDG PET-CT images for the evaluation of mediastinal lymph nodes in patients with lung cancer[J]. Eur J Radiol,2015,84(2):312-317.
[[26]]   EL NAQA I, GRIGSBY P, APTE A, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes[J]. Pattern Recognit,2009,42(6):1162-1171.
[[27]]   VAN ROSSUM P S, FRIED D V, ZHANG L, et al. The incremental value of subjective and quantitative assessment of 18F-FDG PET for the prediction of pathologic complete response to preoperative chemoradiotherapy in esophageal cancer[J]. J Nucl Med,2016,57(5):691-700.
[[28]]   HUANG Y Q, LIANG C H, HE L, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer[J]. J Clin Oncol,2016,34(18):2157-2164.
[[29]]   LI H, ZHU Y, BURNSIDE E S, et al. MR imaging radiomics signatures for predicting the risk of breast cancer recurrence as given by research versions of MammaPrint, Oncotype DX, and PAM50 gene assays[J]. Radiology,2016,281(2):382-391.
[[30]]   HUANG Y, LIU Z, HEL, et al. Radiomics signature:a potential biomarker for the prediction of disease-free survival in early-stage (I or Ⅱ) non-small cell lung cancer[J]. Radiology,2016,281(3):947-957.
[[31]]   HAWKINS S, WANG H, LIU Y, et al. Predicting malignant nodules from screening CT scans[J]. J Thorac Oncol,2016,11(12):2120-2128.
[[32]]   ROBERTSON S P, QUON H, KIESS A P, et al. A data-mining framework for large scale analysis of dose-outcome relationships in a database of irradiated head and neck cancer patients[J]. Med Phys,2015,42(7):4329-4337.
[[33]]   DREYER K J, GEIS J R. When machines think:radiology's next frontier[J]. Radiology,2017,285(3):713-718.
[[34]]   BIBAULT J E, GIRAUD P, BURGUN A. Big data and machine learning in radiation oncology:state of the art and future prospects[J]. Cancer Lett,2016,382(1):110-117.
[[35]]   KANG J, SCHWARTZ R, FLICKINGER J, et al. Machine learning approaches for predicting radiation therapy outcomes:a clinician's perspective[J]. Int J Radiat Oncol Biol Phys,2015,93(5):1127-1135.
[[36]]   SHIN H C, ROTH H R, GAO M, et al. Deep convolutional neural networks for computer-aided detection:CNN architectures, dataset characteristics and transfer learning[J]. IEEE Trans Med Imaging,2016,35(5):1285-1298.
[[37]]   GULLIFORD S L, WEBB S, ROWBOTTOM C G, et al. Use of artificial neural networks to predict biological outcomes for patients receiving radical radiotherapy of the prostate[J]. Radiother Oncol,2004,71(1):3-12.
[[38]]   CRUZ J A, WISHART D S. Applications of machine learning in cancer prediction and prognosis[J]. Cancer Inform,2007,2:59-77.
[[39]]   SHEN D, WU G, SUK H I. Deep learning in medical image analysis[J]. Annu Rev Biomed Eng,2017,19:221-248.
[[40]]   ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature,2017,542(7639):115-118.
[[41]]   HAZLETT H C, GU H, MUNSELL B C,et al. Early brain development in infants at high risk for autism spectrum disorder[J]. Nature,2017,542(7641):348-351.
[[42]]   SHEN W, ZHOU M, YANG F, et al. Multi-scale convolutional neural networks for lung nodule classification[J]. Inf Process Med Imaging,2015,24:588-599.
[[43]]   PELLA A, CAMBRIA R, RIBOLDI M, et al. Use of machine learning methods for prediction of acute toxicity in organs at risk following prostate radiotherapy[J]. Med Phys,2011,38(6):2859-2867.
[[44]]   ZHOU M, SCOTT J, CHAUDHURY B, et al. Radiomics in brain tumor:image assessment, quantitative feature descriptors, and machine-learning approaches[J]. AJNR Am J Neuroradiol,2017.[Epub ahead of print]
[[45]]   CHEN R C, GABRIEL P E, KAVANAGH B D, et al. How will big data impact clinical decision making and precision medicine in radiation therapy?[J]. Int J Radiat Oncol Biol Phys,2016,95(3):880-884.
[[46]]   JIANG Y, MA D, SEIBERLICH N, et al. MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout[J]. Magn Reson Med,2015,74(6):1621-1631.
[[47]]   CHRISTEN T, PANNETIER N A, NI W W, et al. MR vascular fingerprinting:a new approach to compute cerebral blood volume, mean vessel radius, and oxygenation maps in the human brain[J]. Neuroimage,2014,89:262-270.
[[48]]   European Society of Radiology (ESR). Magnetic Resonance Fingerprinting-a promising new approach to obtain standardized imaging biomarkers from MRI[J]. Insights Imaging,2015,6(2):163-165.
[[49]]   BADVE C, YU A, DASTMALCHIAN S, et al. MR Fingerprinting of Adult Brain Tumors:Initial Experience[J]. AJNR Am J Neuroradiol,2017,38(3):492-499.
[1] PAN Jingying, HE Mengye, KE Wei, HU Menglin, WANG Meifang, SHEN Peng. Advances on correlation of PET-CT findings with breast cancer molecular subtypes, treatment response and prognosis[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 473-480.
[2] FU Liping, CHENG Aiping, SUN Meiling, WANG Xiaogang, FU Jianlan. Value of 18F-FDG PET-CT in detection of primary lesion and pelvic lymph node metastasis in FIGO stages ⅠA2-ⅡA cervical cancer[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 517-522.
[3] LOU Zhaohan, FEI Xufeng, YAN Jianbo, JIA Qiaonjuan, HUANG Yijian, WU Jiaping. Geographic spatial pattern of digestive system cancers in Yiwu city[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 537-545.
[4] YE Hongrou, CHEN Chunxiao. Comparison of double-balloon endoscopy and multi-detector row computed tomography in diagnosis of small intestinal tumors[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 557-562.
[5] ZHANG Siying, CHEN Feng. Research progress of CT/MRI parametric response map in precision evaluation of therapeutic response of cancer patients[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 468-472.
[6] PAN Yao, CHEN Jieyu, YU Risheng. Accurate imaging diagnosis and evaluation of pancreatic cancer[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 462-467.
[7] LI Aijing, PAN Yuning, CHEN Bin, XIA Jianbi, GAN Fang, JIN Yinhua, ZHENG Jianjun. Association of parameters in dynamic contrast-enhanced MRI using reference region model with prognostic factors and molecular subtypes of breast cancer[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 505-510.
[8] ZHANG Ge'er, PAN Zimin. Gestational trophoblastic diseases in cesarean scar: an analysis of 20 cases[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 529-536.
[9] BIAN Wei, YAO Yuan, ZHANG Haijin, YE Xiaoqian, ZHANG Minming. Application of CT scan in diagnosis of pathological type and origin of metastatic ovarian tumors[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 546-551.
[10] DONG Fei, LI Qian, JIANG Biao, ZENG Qiang, HUA Jianming, ZHANG Minming. Quantitative analysis of enhanced MRI features for predicting epidermal growth factor receptor gene amplification in glioblastoma multiforme with radiomic method[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 492-497.
[11] WANG Subo, ZHAO Zhenhua, HU Hongjie, YANG Jianfeng, ZHAO Li, YANG Liming, WANG Cheng. Application of dynamic-contrast enhanced magnetic resonance pharmacokinetic models in differential diagnosis of cellular uterine leiomyoma[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 498-504.
[12] KUANG Pingding, DING Xinfa, XU Jingjing, ZHOU Qijing, ZHANG Minming. Diagnostic value of dual energy CT for lymph node metastasis in patients with non-small cell lung cancer[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 511-516.
[13] WANG Mengyan, ZHU Biao. Research progress on genes mutations related to sulfa drug resistance in Pneumocystis jirovecii[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 563-569.
[14] JIANG Yiqian, GUO Qingmin, GU Jianzhong, XU Xiaoping, AN Suhong, SU Fang, BAO Yanhong, HUANG Changxin, GUAN Xiaoxiang. Effect of microRNA-29b on proliferation and migration of breast cancer cells and its molecular mechanism[J]. Journal of ZheJiang University(Medical Science), 2017, 46(4): 349-356.
[15] WANG Haifeng, CHEN Tiantian, WANG Yueyue, LI Yu, ZHANG Lingyu, DING Yongxing, CHEN Sulian, WANG Wenrui, YANG Qingling, CHEN Changjie. CXC chemokine receptor 4 regulates breast cancer cell cycle through S phase kinase associated protein 2[J]. Journal of ZheJiang University(Medical Science), 2017, 46(4): 357-363.