Please wait a minute...
Journal of ZheJiang University(Medical Science)  2016, Vol. 45 Issue (2): 126-131    DOI: 10.3785/j.issn.1008-9292.2016.03.04
    
Fabrication of bioactive tissue engineering scaffold for reconstructing calcified cartilage layer based on three-dimension printing technique
YU Xinning1, FANG Jinghua1, LUO Jianyang1, YANG Xianyan2, HE Dongshuang2, GOU Zhongru2, DAI Xuesong1
1. Department of Orthopedic Surgery, Orthopedics Research Institute of Zhejiang University, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
2. Zhejiang-California International Nanosystems Institute, Hangzhou 310058, China
Download:   PDF(1235KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To fabricate organic-inorganic composite tissue engineering scaffolds for reconstructing calcified cartilage layer based on three-dimensional (3D) printing technique. Methods: The scaffolds were developed by 3D-printing technique with highly bioactive calcium-magnesium silicate ultrafine particles of 1%, 3% and 5% of mass fraction, in which the organic phases were composed of type I collagen and sodium hyaluronate. The 3D-printed scaffolds were then crosslinked and solidified by alginate and CaCl2 aerosol. The pore size and distribution of inorganic phase were observed with scanning electron microscope (SEM); the mechanical properties were tested with universal material testing machine, and the porosity of scaffolds was also measured. Results: Pore size was approximately (212.3±34.2) μm with a porosity of (48.3±5.9)%, the compressive modulus of the scaffolds was (7.2±1.2) MPa, which was irrelevant to the percentage changes of calcium-magnesium silicate, the compressive modulus was between that of cartilage and subchondral bone. Conclusion: The porous scaffolds for calcified cartilage layer have been successfully fabricated, which would be used for multi-layered composite scaffolds in osteochondral injury.



Key wordsCartilage diseases/therapy      Silicon      Calcium compounds      Hyaluronic acid      Collagen type I      Computer-aided design      Imaging, three-dimensional      Sodiwm alginate      Scaffolds     
Received: 12 October 2015     
CLC:  R68  
Cite this article:

YU Xinning, FANG Jinghua, LUO Jianyang, YANG Xianyan, HE Dongshuang, GOU Zhongru, DAI Xuesong. Fabrication of bioactive tissue engineering scaffold for reconstructing calcified cartilage layer based on three-dimension printing technique. Journal of ZheJiang University(Medical Science), 2016, 45(2): 126-131.

URL:

http://www.zjujournals.com/xueshu/med/10.3785/j.issn.1008-9292.2016.03.04     OR     http://www.zjujournals.com/xueshu/med/Y2016/V45/I2/126


基于三维打印的钙化层重建生物活性支架制备及其性能研究

目的: 初步构建基于软骨钙化层损伤重建的有机—无机复合组织工程支架,探究掺镁硅灰石含量与支架抗压性能之间的关系。方法: 利用质量分数分别为1%、3%、5%的高生物活性钙镁硅酸盐超细颗粒复合Ⅰ型胶原—透明质酸钠进行三维打印,经海藻酸钠—氯化钙气雾交联成型,电镜下观察表面孔隙、孔径、无机相分布,万能材料试验机测试抗压性能,并计算支架孔隙率。结果: 支架表面平均孔径(212.3±34.2)μm,平均孔隙率(48.3±5.9)%,不同质量分数的高生物活性钙镁硅酸盐超细颗粒复合Ⅰ型胶原—透明质酸钠支架压缩模量差异无统计学意义(P>0.05),平均压缩模量(7.2±1.2)MPa,介于软骨和软骨下骨之间。结论: 利用三维打印技术成功构建出多孔钙化层仿生重建支架,可为今后研制多层次复合支架治疗骨—软骨损伤奠定基础。


关键词: 软骨疾病/治疗,  硅,  钙化合物,  透明质酸,  胶原Ⅰ型,  计算机辅助设计,  成像,三维,  海藻酸钠,  支架 

[1] FRISBIE D D, TROTTER G W, POWERS B E, et al. Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses[J]. Vet Surg, 1999, 28(4):242-255.
[2] BEDI A, FEELEY B T, WILLIAMS R J 3RD. Management of articular cartilage defects of the knee[J]. J Bone Joint Surg Am, 2010, 92(4):994-1009.
[3] HUNZIKER E B. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects[J]. Osteoarthritis Cartilage, 2002, 10(6):432-463.
[4] YE K, DI BELLA C, MYERS D E, et al. The osteochondral dilemma: review of current management and future trends[J]. ANZ J Surg, 2014, 84(4):211-217.
[5] SHOR L, GVÜERI S, CHANG R, et al. Precision extruding deposition(PED) fabrication of polycaprolactone(PCL) scaffolds for bone tissue engineering[J]. Biofabrication, 2009, 1(1):015003.
[6] KHANARIAN N T, HANEY N M, BURGA R A, et al. A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration[J]. Biomaterials, 2012, 33(21):5247-5258.
[7] SUN H, WU C, DAI K, et al. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics[J]. Biomaterials, 2006, 27(33):5651-5657.
[8] HUANG Y, JIN X, ZHANG X, et al. In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration[J]. Biomaterials, 2009, 30(28):5041-5048.
[9] TAN H, CHU C R, PAYNE K A, et al. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering[J]. Biomaterials, 2009, 30(13):2499-2506.
[10] KAWASAKI K, OCHI M, UCHIO Y, et al. Hyaluronic acid enhances proliferation and chondroitin sulfate synthesis in cultured chondrocytes embedded in collagen gels[J]. J Cell Physiol, 1999, 179(2):142-148.
[11] CIANFLOCCO A J. Viscosupplementation in patients with osteoarthritis of the knee[J]. Postgrad Med, 2013, 125(1):97-105.
[12] RESPONTE D J, NATOLI R M, ATHANASIOU K A. Identification of potential biophysical and molecular signalling mechanisms underlying hyaluronic acid enhancement of cartilage formation[J]. J R Soc Interface, 2012, 9(77):3564-3573.
[13] RUDERT M. Histological evaluation of osteochondral defects: consideration of animal models with emphasis on the rabbit, experimental setup, follow-up and applied methods[J]. Cells Tissues Organs, 2002, 171(4):229-240.
[14] HUNZIKER E B, DRIESANG I M, SAAGER C. Structural barrier principle for growth factor-based articular cartilage repair[J]. Clin Orthop Relat Res, 2001(391 Suppl):S182-S189.
[15] ALLAN K. S, PILLIAR R M, WANG J, et al. Formation of biphasic constructs containing cartilage with a calcified zone interface[J]. Tissue Eng, 2007, 13(1):167-177.
[16] DA H, JIA S J, MENG G L, et al. The impact of compact layer in biphasic scaffold on osteochondral tissue engineering[J]. PLoS One, 2013, 8(1):e54838.
[17] SEIDI A, RAMALINGAM M, ELLOUMI-HANNACHI I, et al. Gradient biomaterials for soft-to-hard interface tissue engineering[J]. Acta Biomater, 2011, 7(4):1441-1451.
[18] GETGOOD A, BROOKS R, FORTIER L, et al. Articular cartilage tissue engineering: today's research, tomorrow's practice?[J]. J Bone Joint Surg Br, 2009, 91(5):565-576.
[19] BOYAN B D, HUMMERT T W, DEAN D D, et al. Role of material surfaces in regulating bone and cartilage cell response[J]. Biomaterials, 1996, 17(2):137-146.
[20] LEONG K F, CHEAH C M, CHUA C K. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs[J]. Biomaterials, 2003, 24(13):2363-2378.
[21] ROBINSON B P, HOLLINGER J O, SZACHOWICZ E H, et al. Calvarial bone repair with porous D, L-polylactide[J]. Otolaryngol Head Neck Surg, 1995, 112(6):707-713.
[22] EL-AYOUBI R, DEGRANDPRE C, DIRADDO R, et al. Design and dynamic culture of 3D-scaffolds for cartilage tissue engineering[J]. J Biomater Appl, 2011, 25(5):429-444.
[23] KARAGEORGIOU V, KAPLAN D. Porosity of 3D biomaterial scaffolds and osteogenesis[J]. Biomaterials, 2005, 26(27):5474-5491.
[24] ZHANG Y, ZHANG M. Microstructural and mechanical characterization of chitosan scaffolds reinforced by calcium phosphates[J]. J Non-Cryst Solids, 2001, 282(2-3):159-164.
[25] MISRA S K, NAZHAT S N, VALAPPIL S P, et al. Fabrication and characterization of biodegradable poly(3-hydroxybutyrate) composite containing bioglass[J]. Biomacromolecules, 2007, 8(7):2112-2119.
[26] LEVINGSTONE T J, MATSIKO A, DICKSON G R, et al. A biomimetic multi-layered collagen-based scaffold for osteochondral repair[J]. Acta Biomaterialia, 2014, 10(5):1996-2004.
[27] CUI X, BREITENKAMP K, FINN M G, et al. Direct human cartilage repair using three-dimensional bioprinting technology[J]. Tissue Eng Part A, 2012, 18(11-12):1304-1312.
[28] AMINI A R, LAURENCIN C T, NUKAVARAPU S P. Bone tissue engineering: recent advances and challenges[J]. Crit Rev Biomed Eng, 2012, 40(5):363-408.
[29] SHAO X, GOH J C, HUTMACHER D W, et al. Repair of large articular osteochondral defects using hybrid scaffolds and 0 bone marrow-derived mesenchymal stem cells in a rabbit model[J]. Tissue Eng, 2006, 12(6):1539-1551.

[1] HU Yejun, LE Huihui, JIN Zhangchu, CHEN Xiao, YIN Zi, SHEN Weiliang, OUYANG Hongwei. Application of silk-based tissue engineering scaffold for tendon / ligament regeneration[J]. Journal of ZheJiang University(Medical Science), 2016, 45(2): 152-160.
[2] YANG Zechuan, LI Chunde, SUN Haolin. Research advances of three-dimension printing technology in vertebrae and intervertebral disc tissue engineering[J]. Journal of ZheJiang University(Medical Science), 2016, 45(2): 141-146.
[3] YAO Mengzhu, SHENG Xiaoxia, LIN Jun, GAO Jianqing. Research progress on application of carbon nanotubes in bone tissue engineering scaffold[J]. Journal of ZheJiang University(Medical Science), 2016, 45(2): 161-169.
[4] ZHENG Zefeng, SHEN Weiliang, LE Huihui, DAI Xuesong, OUYANG Hongwei, CHEN Weishan. Three-dimensional parallel collagen scaffold promotes tendon extracellular matrix formation[J]. Journal of ZheJiang University(Medical Science), 2016, 45(2): 120-125.
[5] ZHOU Pinghui, GUO Qianping, LING Feng, QIAN Zhonglai, LI Bin. Progress and challenges in tissue engineering of intervertebral disc annulus fibrosus[J]. Journal of ZheJiang University(Medical Science), 2016, 45(2): 132-140.
[6] LI Jiu-ke, JIN Xiao-hong, FANG Wei, FENG Li-guo, ZHAI Jing, LI Yu-min. Preretinal hemorrhage and prognosis following vitrectomy and silicone oil tamponade for severe proliferative diabetic retinopathy[J]. Journal of ZheJiang University(Medical Science), 2015, 44(2): 167-173.
[7] WANG Bing, CHEN Yan, SONG Yang, WANG En-sheng, ZHENG Dan, QU Fan, ZHOU Jian-hong. Correlation between follicle-stimulating hormone and total procollagen I N-terminal propeptide in perimenopausal women[J]. Journal of ZheJiang University(Medical Science), 2015, 44(1): 85-89.
[8] . Application of CAD/CAM technique in three-dimensional reconstruction of zygomatic complex defect[J]. Journal of ZheJiang University(Medical Science), 2012, 41(3): 245-249.
[9] Zhao Shifang, Yang Mingda, Cheng Junjie, Cheng Zhipeng. EXPERIMENT ON TEMPORARY MICROARTE-RIAL BRIDGING WITH SILICONE CATHETER[J]. Journal of ZheJiang University(Medical Science), 1992, 21(6): 256-258.