Please wait a minute...
Journal of ZheJiang University(Medical Science)  2016, Vol. 45 Issue (1): 68-74    DOI: 10.3785/j.issn.1008-9292.2016.01.11
Overexpression of PPARγ induces adipogenic steatosis in mouse primary hepatocytes
BAI Liang1,2, ZHANG Yali1,2, XIE Chen1,2, WANG Rong1,2, ZHAO Sihai1,2, JIA Yuzhi3, LIU Enqi1,2
1. Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China;
2. Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China;
3. Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
Download:   PDF(990KB)
Export: BibTeX | EndNote (RIS)      


Objective: To investigate the effects of PPARγ overexpression on steatosis in mouse primary hepatocytes. Methods: Primary hepatocytes isolated from C57BL/6J mice were infected with either Ad/LacZ or Ad/PPARγ for 48 h. Steatosis of the primary hepatocytes was checked by Oil Red O staining. The mRNA and protein expression of adipocyte-specific genes PPARγ, aP2 and CideA were analyzed by using RT Real-time PCR and Western Blot. Results: Primary hepatocytes were small and even. Hepatocyte nuclei were round with dispersed chromatin and prominent nucleoli. Accumulated lipid droplets were observed in Ad/PPARγ-infected hepatocytes, but in Ad/LacZ-infected hepatocytes. Moreover, compared with Ad/LacZ-infected hepatocytes, the mRNA expression of PPARγ, aP2, FGF21 and CideA in Ad/PPARγ-infected hepatocytes were significantly induced, the protein expression of PPARγ and its target aP2 strongly increased. Conclusion: over expression of PPARγ induces adipogenic steatosis in mouse primary hepatocytes.

Key wordsMice, inbred C57BL      Hepatocytes/cytology      PPAR gamma/biosynthesis      Lipogenesis      Cells, cultured     
Received: 30 September 2015     
CLC:  R575  
Cite this article:

BAI Liang, ZHANG Yali, XIE Chen, WANG Rong, ZHAO Sihai, JIA Yuzhi, LIU Enqi. Overexpression of PPARγ induces adipogenic steatosis in mouse primary hepatocytes. Journal of ZheJiang University(Medical Science), 2016, 45(1): 68-74.

URL:     OR


目的:研究外源过氧化物酶体增殖子激活受体(PPAR)γ高表达对小鼠原代肝细胞脂肪变性的影响。方法:从5~6周龄C57BL/6J小鼠分离培养原代肝细胞,分别用LacZ腺病毒(Ad/LacZ)或PPARγ腺病毒(Ad/PPARγ)感染细胞48 h,油红O染色检测原代肝细胞脂肪积聚情况;实时定量PCR和蛋白质印迹法分析PPARγ、成脂相关基因aP2和CideA等mRNA和蛋白表达水平。结果:原代分离培养的小鼠肝细胞透光度好,胞核圆且透亮,细胞呈圆形生长,有双核,连接成片状或岛状。用Ad/LacZ或Ad/PPARγ感染48 h后,Ad/LacZ组肝细胞几乎无脂肪积聚,而Ad/PPARγ感染肝细胞中有大量脂肪滴沉积。外源PPARγ刺激作用下,肝细胞中PPARγ、aP2、FGF21、CideA mRNA表达增加,而adiponectin mRNA表达下降(均P<0.05)。Ad/PPARγ感染后,PPARγ和aP2蛋白表达也增加。结论:高表达PPARγ诱导小鼠原代肝细胞脂肪变性和脂肪相关基因表达。

关键词: 小鼠,近交C57BL,  肝细胞/细胞学,  PPARγ/生物合成,  脂肪生成,  细胞,培养的 
[[1]]   ANDERSON N, BORLAK J. Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis[J]. Pharmacol Rev, 2008, 60(3):311-357.
[[2]]   REDDY J K, RAO M S. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation[J]. Am J Physiol Gastrointest Liver Physiol, 2006, 290(5):G852-G858.
[[3]]   BOPPIDI H, DARAM S R. Nonalcoholic fatty liver disease:hepatic manifestation of obesity and the metabolic syndrome[J]. Postgrad Med, 2008, 120(2):E01-E07.
[[4]]   JIA Y, VISWAKARMA N, REDDY J K. Med1 subunit of the mediator complex in nuclear receptor-regulated energy metabolism, liver regeneration, and hepatocarcinogenesis[J]. Gene Expr, 2014, 16(2):63-75.
[[5]]   REDDY J K, GUO D, JIA Y, et al. Nuclear receptor transcriptional coactivators in development and metabolism[J]. Adv Dev Biol, 2006, 16:389-420.
[[6]]   SHAO X, WANG M, WEI X, et al. Peroxisome proliferator-activated receptor-gamma:master regulator of adipogenesis and obesity[J]. Curr Stem Cell Res Ther, 2015.Epub ahead of print.
[[7]]   TONTONOZ P, HU E, SPIEGELMAN B M. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor[J]. Cell, 1994, 79(7):1147-1156.
[[8]]   COSTET P, LEGENDRE C, MORE J, et al. Peroxisome proliferator-activated receptor alpha-isoform deficiency leads to progressive dyslipidemia with sexually dimorphic obesity and steatosis[J]. J Biol Chem, 1998, 273(45):29577-29585.
[[9]]   MEMON R A, TECOTT L H, NONOGAKI K, et al. Up-regulation of peroxisome proliferator-activated receptors (PPAR-alpha) and PPAR-gamma messenger ribonucleic acid expression in the liver in murine obesity:troglitazone induces expression of PPAR-gamma-responsive adipose tissue-specific genes in the liver of obese diabetic mice[J]. Endocrinology, 2000, 141(11):4021-4031.
[[10]]   GAVRILOVA O, HALUZIK M, MATSUSUE K, et al. Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass[J]. J Biol Chem, 2003, 278(36):34268-34276.
[[11]]   BAI L, JIA Y, VISWAKARMA N, et al. Transcription coactivator mediator subunit MED1 is required for the development of fatty liver in the mouse[J]. Hepatology, 2011, 53(4):1164-1174.
[[12]]   WANG Y X. PPARs:diverse regulators in energy metabolism and metabolic diseases[J]. Cell Res, 2010, 20(2):124-137.
[[13]]   ROSEN E D, SARRAF P, TROY A E, et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro[J]. Mol Cell, 1999, 4(4):611-617.
[[14]]   BARAK Y, NELSON M C, ONG E S, et al. PPAR gamma is required for placental, cardiac, and adipose tissue development[J]. Mol Cell, 1999, 4(4):585-595.
[[15]]   MATSUSUE K, HALUZIK M, LAMBERT G, et al. Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes[J]. J Clin Invest, 2003, 111(5):737-747.
[[16]]   WANG Y X, LEE C H, TIEP S, et al. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity[J]. Cell, 2003, 113(2):159-170.
[[17]]   YU S, VISWAKARMA N, BATRA S K, et al. Identification of promethin and PGLP as two novel up-regulated genes in PPARgamma1-induced adipogenic mouse liver[J]. Biochimie, 2004, 86(11):743-761.
[[18]]   WOLINS N E, QUAYNOR B K, SKINNER J R, et al. OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization[J]. Diabetes, 2006, 55(12):3418-3428.
[[19]]   HALL A M, BRUNT E M, CHEN Z, et al. Dynamic and differential regulation of proteins that coat lipid droplets in fatty liver dystrophic mice[J]. J Lipid Res, 2010, 51(3):554-563.
[[20]]   HUANG J, IQBAL J, SAHA P K, et al. Molecular characterization of the role of orphan receptor small heterodimer partner in development of fatty liver[J]. Hepatology, 2007, 46(1):147-157.
[[21]]   BADMAN M K, KOESTER A, FLIER J S, et al. Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis[J]. Endocrinology, 2009, 150(11):4931-4940.
[[22]]   XU J, LLOYD D J, HALE C, et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice[J]. Diabetes, 2009, 58(1):250-259.
[[23]]   Díez J J, IGLESIAS P. The role of the novel adipocyte-derived hormone adiponectin in human disease[J]. Eur J Endocrinol, 2003, 148(3):293-300.
[[24]]   BAUCHE I B, EL MKADEM S A, POTTIER A M, et al. Overexpression of adiponectin targeted to adipose tissue in transgenic mice:impaired adipocyte differentiation[J]. Endocrinology, 2007, 148(4):1539-1549.
[[25]]   UKKOLA O, SANTANIEMI M. Adiponectin:a link between excess adiposity and associated comorbidities?[J]. J Mol Med (Berl), 2002, 80(11):696-702.
[[26]]   RENALDI O, PRAMONO B, SINORITA H, et al. Hypoadiponectinemia:a risk factor for metabolic syndrome[J]. Acta Med Indones, 2009, 41(1):20-24.
[1] CHEN Yanshan, YU Chengbo, CAO Hongcui, LI Lanjuan. Effect of shift rotation culture on formation and activity of encapsulated hepatocytes aggregates[J]. Journal of ZheJiang University(Medical Science), 2016, 45(4): 403-409.