Please wait a minute...
Journal of ZheJiang University(Medical Science)  2015, Vol. 44 Issue (3): 293-300    DOI: 10.3785/j.issn.1008-9292.2015.05.09
    
Influence of gelatin particle size and gelatin/calcium phosphate cement ratio on repairing potency of composite artificial bone material
LI Yun1, LIU Yan-ming1, FU Tao1, LI Bo2
1. Department of Oral and Maxillofacial Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
2. Institute of Biomedical Polymers, Zhejiang University, Hangzhou 310031, China
Download: HTML (   PDF(3804KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To investigate the influence of gelatin particle(GP) size and gelatin/calcium phosphate cement(GP/CPC) ratio on repairing potency of comparison artificial bone material. Methods: Composite GP/CPC materials with different GP size(100~200 μm vs. 200~300 μm) and ratio(5% vs. 10%) were prepared. Physiochemical and biological properties, including porosity, resistance to compression, ultrastructure and biocompatibility were compared among 4 groups of GP/CPC materials. Different GP/CPC materials were used to repair the critical-size cranial bone defect in rabbit model, and the histology and newly formed bone inside scaffolds(nBIS) were examined and compared among different groups. Results: GP/CPC with GP of 200~300 μm possessed larger micropores than that with GP of 100~200μm(P<0.05). The GP/CPC containing 10% GP had higher porosity than that containing 5% GP(P<0.05). The animal model study showed that more new bone formed in those defects filled with GP/CPC containing 10% GP with 200~300 μm in size compared with GP/CPC containing 5% GP with 100~200 μm in size(P<0.05). While GP/CPC containing 5%GP with 100~200 μm in size showed a higher level of resistance to compression. Conclusion: Both the particle size of GP and its ratio in the GP/CPC affect the properties of the composite biomaterials and their role in bone repairing. In particular, the GP/CPC containing 10% GP with 200~300 μm in size is most suitable for repairing critical-size cranial bone defect in animal model.



Key wordsGelatin/therapeutic use      Microspheres      Bone cements/therapeutic use      Calcium phosphates/therapeutic use      Biocompatible materials/therapeutic use      Skull/injuries      Skull/surgery     
Received: 11 February 2015      Published: 25 May 2015
CLC:  R651  
Cite this article:

LI Yun, LIU Yan-ming, FU Tao, LI Bo. Influence of gelatin particle size and gelatin/calcium phosphate cement ratio on repairing potency of composite artificial bone material. Journal of ZheJiang University(Medical Science), 2015, 44(3): 293-300.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2015.05.09     OR     http://www.zjujournals.com/med/Y2015/V44/I3/293


明胶微粒粒径及含量对明胶微粒与磷酸钙骨水泥复合人工骨材料修复骨缺损的影响

目的:研究明胶微粒(GP)粒径及明胶与磷酸钙骨水泥(CPC)质量配比这两大因素对GP/ CPC复合人工骨材料修复骨缺损的效果。方法:将不同GP粒径(100~200 μm、200~300 μm)及不同GP与CPC配比(5%GP、10%GP)两两配对后制备GP/CPC复合材料,比较GP/CPC复合材料的孔隙率、抗压强度、表面超微结构、体外生物相容性四大理化特性;构建新西兰兔颅骨缺损模型,在相同质控条件下将上述4组GP/CPC复合人工骨材料进行骨缺损填充,观察并比较其骨修复组织学差异及新骨形成率差异。结果:与粒径100~200 μm的GP和5%GP配比组比较,粒径200~300 μm的GP和10%GP配比制备的GP/CPC复合材料具有较大的孔径和较高的孔隙率(P<0.05),且在兔颅骨缺损修复中有更高的新骨形成量(P<0.05);而100~200 μm粒径、5%GP配比组则具有较强的抗压强度(P<0.05)。结论:不同GP粒径和含量的GP/CPC复合材料理化特性和修复骨缺损的效果不同,其中GP 200~300 μm粒径和10%质量比的GP/CPC复合新型材料更具成骨效果。


关键词: 明胶/治疗应用,  微球体,  骨黏合剂/治疗应用,  磷酸钙类/治疗应用,  生物相容性材料/治疗应用,  颅骨/损伤,  颅骨/外科学 

[1] RUH P Q, KROESE-DEUTMAN H C, WOLKE J G, et al. Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits [J]. Biomaterials, 2004,25(11):2123-2132.
[2] BOSE S, TARAFDER S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review [J]. Acta Biomater,2012,8(4):1401-1421.
[3] KEMPEN D H, LU L, HEFFERAN T E, et al. Retention of in vitro and in vivo BMP-2 bioactivities in sustained delivery vehicles for bone tissue engineering [J]. Biomaterials,2008,29(22):3245-3252.
[4] VLAD M D, SINDILAR E V, MARINOSO M L, et al. Osteogenic biphasic calcium sulphate dihydrate/iron-modified alpha-tricalcium phosphate bone cement for spinal applications: in vivo study [J]. Acta Biomater,2010,6(2):607-616.
[5] DEL REAL R P, OOMS E, WOLKE J G, et al. In vivo bone response to porous calcium phosphate cement [J]. J Biomed Mater Res A,2003,65(1):30-36.
[6] MOONEY D J, BALDWIN D F, SUH N P, et al. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents [J]. Biomaterials,1996,17(14):1417-1422.
[7] THOMSON R C, MIKOS A G, BEAHM E, et al. Guided tissue fabrication from periosteum using preformed biodegradable polymer scaffolds [J]. Biomaterials, 1999,20(21):2007-2018.
[8] NARAYAN D, VENKATRAMAN S S. Effect of pore size and interpore distance on endothelial cell growth on polymers [J]. J Biomed Mater Res A,2008,87(3):710-718.
[9] OH S H, PARK I K, KIM J M, et al. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method [J]. Biomaterials,2007,28(9):1664-1671.
[10] KARAGEORGIOU V, KAPLAN D. Porosity of 3D biomaterial scaffolds and osteogenesis [J]. Biomaterials,2005,26(27):5474-5491.
[11] AKAY G, BIRCH M A, BOKHARI M A. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro [J]. Biomaterials,2004,25(18):3991-4000.
[12] LU J X, FLAUTRE B, ANSELME K, et al. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo [J]. J Mater Sci Mater Med,1999,10(2):111-120.
[13] MASTROGIACOMO M, SCAGLIONE S, MARTINETTI R, et al. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics [J]. Biomaterials,2006,27(17):3230-3237.
[14] MURPHY C M, HAUGH M G, O'BRIEN F J. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering [J]. Biomaterials,2010,31(3):461-466.
[15] GRIFFON D J, SEDIGHI M R, SCHAEFFER D V, et al. Chitosan scaffolds: interconnective pore size and cartilage engineering [J]. Acta Biomater,2006,2(3):313-320.
[16] SOBRAL J M, CARIDADE S G, SOUSA R A, et al. Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency [J]. Acta Biomater,2011,7(3):1009-1018.
[17] HOLLINGER J O, KLEINSCHMIDT J C. The critical size defect as an experimental model to test bone repair materials [J]. J Craniofac Surg,1990,1(1):60-68.
[18] KASUYA A, SOBAJIMA S, KINOSHITA M. In vivo degradation and new bone formation of calcium phosphate cement-gelatin powder composite related to macroporosity after in situ gelatin degradation [J]. J Orthop Res,2012,30(7):1103-1111.
[19] LIN A S, BARROWS T H, CARTMELL S H, et al. Microarchitectural and mechanical characterization of oriented porous polymer scaffolds [J]. Biomaterials,2003,24(3):481-489.
[20] KOKUBO T, KIM H M, KAWASHITA M. Novel bioactive materials with different mechanical properties [J]. Biomaterials,2003,24(13):2161-2175.
[21] LASCHKE M W, STROHE A, SCHEUER C, et al. In vivo biocompatibility and vascularization of biodegradable porous polyurethane scaffolds for tissue engineering [J]. Acta Biomater,2009,5(6):1991-2001.
[22] BURG K J, PORTER S, KELLAM J F. Biomaterial developments for bone tissue engineering [J]. Biomaterials,2000,21(23):2347-2359.

[1] CHEN Gang,ZHANG Ding,YING Yacao,WANG Zhifeng,TAO Wei,ZHU Hao,ZHANG Jingfeng,PENG Zhiyi. Clinical investigation on transarterial chemoembolization with indigenous drug-eluting beads in treatment of unresectable hepatocellular carcinoma[J]. Journal of ZheJiang University(Medical Science), 2017, 46(1): 44-51.
[2] LI Jiang,et al. Surgical treatment combined with oral administration of indomethacin for eosinophilic granuloma of the skull: report of a pediatric case[J]. Journal of ZheJiang University(Medical Science), 2014, 43(4): 501-503.
[3] . Preparation method of polystyrene core-poly (acrylamide-acrylic acid) shell fluorescent microspheres[J]. Journal of ZheJiang University(Medical Science), 2011, 40(1): 44-50.