Please wait a minute...
J Zhejiang Univ (Med Sci)  2021, Vol. 50 Issue (2): 261-266    DOI: 10.3724/zdxbyxb-2021-0117
Research progress on the biomedical application of microalgae
REN Chaojie1(),ZHONG Danni2,*(),ZHOU Min1,2,*()
1. the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
2. Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
Download: HTML( 11 )   PDF(1977KB)
Export: BibTeX | EndNote (RIS)      


Microalgae is an easy-to-obtain natural biological material with many varieties and abundant natural reserves. Microalgae are rich in natural fluorescein, which can be used as a contrast agent for fluorescence imaging and photoacoustic imaging for medical imaging. With its active surface, microalgae can effectively adsorb functional molecules, metal elements, etc., and have good application prospects in the field of drug delivery. Microalgae can generate oxygen through photosynthesis to increase local oxygen concentration, reverse local hypoxia to enhance the efficacy of hypoxic tumors and promote wound healing. In addition, microalgae have good biocompatibility, and different administration methods have no obvious toxicity. This paper reviews the research progress on the biomedical application of microalgae in bioimaging, drug delivery, hypoxic tumor treatment, wound healing.

Key wordsMicroalgae      Bioimaging      Drug delivery      Hypoxic tumor therapy      Wound healing      Review     
Received: 26 January 2021      Published: 18 June 2021
CLC:  Q81  
Corresponding Authors: ZHONG Danni,ZHOU Min     E-mail:;
Cite this article:

REN Chaojie,ZHONG Danni,ZHOU Min. Research progress on the biomedical application of microalgae. J Zhejiang Univ (Med Sci), 2021, 50(2): 261-266.

URL:     OR



关键词: 微藻,  生物成像,  药物递送,  乏氧肿瘤治疗,  伤口愈合,  综述 
[1]   IGEO O, UMORUL E, ARIBOS. Natural products: a minefield of biomaterials[J]ISRN Mater Sci, 2012, 1-20.
doi: 10.5402/2012/983062
[2]   GANGLD, ZEDLERJ A Z, RAJAKUMARP D, et al.Biotechnological exploitation of microalgae[J]J Exp Bot, 2015, 66( 22): 6975-6990.
doi: 10.1093/jxb/erv426
[3]   TORRES-TIJIY, FIELDSF J, MAYFIELDS P. Microalgae as a future food source[J]Biotechnol Adv, 2020, 107536.
doi: 10.1016/j.biotechadv.2020.107536
[4]   BHUJADER, CHIDAMBARAMM, KUMARA, et al.Algae to economically viable low-carbon-footprint oil[J]Annu Rev Chem Biomol Eng, 2017, 8( 1): 335-357.
doi: 10.1146/annurev-chembioeng-060816-101630
[5]   MONTEROL, DEL PILAR SáNCHEZ-CAMARGOA, IBá?EZE, et al.Phenolic compounds from edible algae: bioactivity and health benefits[J]Curr Med Chem, 2018, 25( 37): 4808-4826.
doi: 10.2174/0929867324666170523120101
[6]   LIANGZ C, LIANGM H, JIANGJ G. Transgenic microalgae as bioreactors[J]Crit Rev Food Sci Nutr, 2020, 60( 19): 3195-3213.
doi: 10.1080/10408398.2019.1680525
[7]   CHENGS Y, SHOWP L, LAUB F, et al.New prospects for modified algae in heavy metal adsorption[J]Trends Biotech, 2019, 37( 11): 1255-1268.
doi: 10.1016/j.tibtech.2019.04.007
[8]   QIAOY, YANGF, XIET, et al.Engineered algae: a novel oxygen-generating system for effective treatment of hypoxic cancer[J]Sci Adv, 2020, 6( 21): eaba5996.
doi: 10.1126/sciadv.aba5996
[9]   SEMERAROP, CHIMIENTIG, ALTAMURAE, et al.Chlorophyll a in cyclodextrin supramolecular complexes as a natural photosensitizer for photodynamic therapy (PDT) applications[J]Mater Sci EngC Mater Biol Appl, 2018, 47-56.
doi: 10.1016/j.msec.2017.12.012
[10]   ZHOUH, XIAL, ZHONGJ, et al.Plant-derived chlorophyll derivative loaded liposomes for tri-model imaging guided photodynamic therapy[J]Nanoscale, 2019, 11( 42): 19823-19831.
doi: 10.1039/C9NR06941K
[11]   WILLIAMSP J B, LAURENSL M L. Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics[J]Energy Environ Sci, 2010, 3( 5): 554.
doi: 10.1039/b924978h
[12]   LUQUER. Algal biofuels: the eternal promise?[J]Energy Environ Sci, 2010, 3( 3): 254.
doi: 10.1039/b922597h
[13]   GUOL P, ZHANGY, LIW C. Sustainable microalgae for the simultaneous synthesis of carbon quantum dots for cellular imaging and porous carbon for CO2 capture[J]J Colloid Interface Sci, 2017, 257-264.
doi: 10.1016/j.jcis.2017.01.003
[14]   SQUIREK, KONGX, LEDUFFP, et al.Photonic crystal enhanced fluorescence immunoassay on diatom biosilica[J/OL]J Biophotonics, 2018, 11( 10): e201800009.
doi: 10.1002/jbio.201800009
[15]   KONGX, SQUIREK, LIE, et al.Chemical and biological sensing using diatom photonic crystal biosilica with in-situ growth plasmonic nanoparticles[J]IEEE Transon NanoBiosci, 2016, 15( 8): 828-834.
doi: 10.1109/TNB.2016.2636869
[16]   BARIANAM, AWM S, KURKURIM, et al.Tuning drug loading and release properties of diatom silica microparticles by surface modifications[J]Int J Pharm, 2013, 443( 1-2): 230-241.
doi: 10.1016/j.ijpharm.2012.12.012
[17]   UTHAPPAU T, BRAHMKHATRIV, SRIRAMG, et al.Nature engineered diatom biosilica as drug delivery systems[J]J Control Release, 2018, 70-83.
doi: 10.1016/j.jconrel.2018.05.013
[18]   XIES, JIAON, TUNGS, et al.Controlled regular locomotion of algae cell microrobots[J]Biomed Microdevices, 2016, 18( 3): 47.
doi: 10.1007/s10544-016-0074-y
[19]   SHCHELIKI S, SIEBERS, GADEMANNK. Green algae as a drug delivery system for the controlled release of antibiotics[J]Chem Eur J, 2020, 26( 70): 16644-16648.
doi: 10.1002/chem.202003821
[20]   WEIBELD B, GARSTECKIP, RYAND, et al.Microoxen: microorganisms to move microscale loads[J]Proc Natl Acad Sci U S A, 2005, 102( 34): 11963-11967.
doi: 10.1073/pnas.0505481102
[21]   AKOLPOGLUM B, DOGANN O, BOZUYUKU, et al.High‐yield production of biohybrid microalgae for on‐demand cargo delivery[J]Adv Sci, 2020, 7( 16): 2001256.
doi: 10.1002/advs.202001256
[22]   YASAO, ERKOCP, ALAPANY, et al.Microalga-powered microswimmers toward active cargo delivery[J/OL]Adv Mater, 2018, 30( 45): e1804130.
doi: 10.1002/adma.201804130
[23]   LOSICD, YUY, AWM S, et al.Surface functionalisation of diatoms with dopamine modified iron-oxide nanoparticles: toward magnetically guided drug microcarriers with biologically derived morphologies[J]Chem Commun, 2010, 46( 34): 6323-6325.
doi: 10.1039/c0cc01305f
[24]   ZHONGD, ZHANGD, XIET, et al.Biodegradable microalgae‐based carriers for targeted delivery and imaging‐guided therapy toward lung metastasis of breast cancer[J/OL]Small, 2020, 16( 20): e2000819.
doi: 10.1002/smll.202000819
[25]   NAGYJ A, CHANGS H, DVORAKA M, et al.Why are tumour blood vessels abnormal and why is it important to know?[J]Br J Cancer, 2009, 100( 6): 865-869.
doi: 10.1038/sj.bjc.6604929
[26]   BLAGOSKLONNYM V. Antiangiogenic therapy and tumor progression[J]Cancer Cell, 2004, 5( 1): 13-17.
doi: 10.1016/S1535-6108(03)00336-2
[27]   BARKERH E, PAGETJ T E, KHANA A, et al.The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence[J]Nat Rev Cancer, 2015, 15( 7): 409-425.
doi: 10.1038/nrc3958
[28]   MAASA L, CARTERS L, WILEYTOE P, et al.Tumor vascular microenvironment determines responsiveness to photodynamic therapy[J]Cancer Res, 2012, 72( 8): 2079-2088.
doi: 10.1158/0008-5472.CAN-11-3744
[29]   CHENH, TIANJ, HEW, et al.H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells[J]J Am Chem Soc, 2015, 137( 4): 1539-1547.
doi: 10.1021/ja511420n
[30]   FANW, BUW, SHENB, et al.Intelligent MnO2 nanosheets anchored with upconversion nanoprobes for concurrent pH-/H2O2-responsive UCL imaging and oxygen-elevated synergetic therapy[J]Adv Mater, 2015, 27( 28): 4155-4161.
doi: 10.1002/adma.201405141
[31]   SINGHS, SHARMAA, ROBERTSONG P. Realizing the clinical potential of cancer nanotechnology by minimizing toxicologic and targeted delivery concerns[J]Cancer Res, 2012, 72( 22): 5663-5668.
doi: 10.1158/0008-5472.CAN-12-1527
[32]   ZHONGD, LIW, QIY, et al.Photosynthetic biohybrid nanoswimmers system to alleviate tumor hypoxiafor FL/PA/MR imaging‐guided enhanced radio‐photodynamic synergetic therapy[J]Adv Funct Mater, 2020, 30( 17): 1910395.
doi: 10.1002/adfm.201910395
[33]   ZHOUT J, XINGL, FANY T, et al.Light triggered oxygen-affording engines for repeated hypoxia-resistant photodynamic therapy[J]J Control Release, 2019, 44-54.
doi: 10.1016/j.jconrel.2019.06.016
[34]   LEEC, LIMK, KIMS S, et al.Chlorella-gold nanorods hydrogels generating photosynthesis-derived oxygen and mild heat for the treatment of hypoxic breast cancer[J]J Control Release, 2019, 77-90.
doi: 10.1016/j.jconrel.2018.12.011
[35]   LIW, ZHONGD, HUAS, et al.Biomineralized biohybrid algae for tumor hypoxia modulation and cascade radio-photodynamic therapy[J]ACS Appl Mater Interfaces, 2020, 12( 40): 44541-44553.
doi: 10.1021/acsami.0c14400
[36]   HUNTT K, BURKEJ, BARBULA, et al.Wound healing[J]Science, 1999, 284( 5421): 1775.
doi: 10.1126/science.284.5421.1773d
[37]   BROUGHTONG, JANISJ E, ATTINGERC E. The basic science of wound healing[J]Plast Reconstr Surg, 2006, 117( 7 Suppl): 12S-34S.
doi: 10.1097/01.prs.0000225430.42531.c2
[38]   SEPEHRIPOURS, DHALIWALK, DHEANSAB. Hyperbaric oxygen therapy and intermittent ischaemia in the treatment of chronic wounds[J]Int Wound J, 2018, 15( 2): 310.
doi: 10.1111/iwj.12852
[39]   HEYBOERM, SHARMAD, SANTIAGOW, et al.Hyperbaric oxygen therapy: side effects defined and quantified[J]Adv Wound Care, 2017, 6( 6): 210-224.
doi: 10.1089/wound.2016.0718
[40]   LIW, WANGS, ZHONGD, et al.A bioactive living hydrogel: photosynthetic bacteria mediated hypoxia elimination and bacteria‐killing to promote infected wound healing[J]Adv Therap, 2021, 4( 1): 2000107.
doi: 10.1002/adtp.202000107
[41]   HARTT, MILNERR, CIFUA. Management of a diabetic foot[J]JAMA, 2017, 318( 14): 1387-1388.
doi: 10.1001/jama.2017.11700
[42]   GONZALEZF J, XIEC, JIANGC. The role of hypoxia-inducible factors in metabolic diseases[J]Nat Rev Endocrinol, 2019, 15( 1): 21-32.
doi: 10.1038/s41574-018-0096-z
[43]   CHENH, CHENGY, TIANJ, et al.Dissolved oxygen from microalgae-gel patch promotes chronic wound healing in diabetes[J]Sci Adv, 2020, 6( 20): eaba4311.
doi: 10.1126/sciadv.aba4311
[44]   CENTENO-CERDASC, JARQUíN-CORDEROM, CHáVEZM N, et al.Development of photosynthetic sutures for the local delivery of oxygen and recombinant growth factors in wounds[J]Acta Biomater, 2018, 184-194.
doi: 10.1016/j.actbio.2018.09.060
[45]   HENDRIJANTININ, SITALAKSMIR M, ARIM D A, et al.The expression of TNF-α, IL-1β, and IL-10 in the diabetes mellitus condition induced by the combination of spirulina and chitosan[J]Bali Med J, 2020, 9( 1): 22.
doi: 10.15562/bmj.v9i1.1625
[46]   CHAMORRO-CEVALLOSG, GARDU?O-SICILIANOL, BARRóNB L, et al.Chemoprotective effect of spirulina (arthrospira) against cyclophosphamide-induced mutagenicity in mice[J]Food Chem Toxicol, 2008, 46( 2): 567-574.
doi: 10.1016/j.fct.2007.08.039
[47]   CHAMORRO-CEVALLOS G. Aspectos nutricionales y toxicológicos de spirulina (arthrospira)[J]. Nutr Hosp, 2015, 32(1): 34-40
[48]   SCHENCKT L, HOPFNERU, CHáVEZM N, et al.Photosynthetic biomaterials: a pathway towards autotrophic tissue engineering[J]Acta Biomater, 2015, 39-47.
doi: 10.1016/j.actbio.2014.12.012
[49]   CHáVEZM N, SCHENCKT L, HOPFNERU, et al.Towards autotrophic tissue engineering: photosynthetic gene therapy for regeneration[J]Biomaterials, 2016, 25-36.
doi: 10.1016/j.biomaterials.2015.10.014
[1] KUANG Wenjing,LUO Xiaobo,WANG Jiongke,ZENG Xin. Research progress on Melkersson-Rosenthal syndrome[J]. J Zhejiang Univ (Med Sci), 2021, 50(2): 148-154.
[2] WANG Chenyu,WANG Yingnan,WANG Cunyi,SHI Jiejun,WANG Huiming. Research progress on tissue engineering in repairing temporo-mandibular joint[J]. J Zhejiang Univ (Med Sci), 2021, 50(2): 212-221.
[3] YING Yingchao,JIANG Peifang. Research progress on transient receptor potential melastatin 2 channel in nervous system diseases[J]. J Zhejiang Univ (Med Sci), 2021, 50(2): 267-276.
[4] SHAO Yiming,SU Lide,HAO Rui,WANG Qianqian,NARANMANDURA Hua. Advances on molecular mechanism of hepatitis B virus-induced hepatocellular carcinoma[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 113-122.
[5] HAN Hengyi,FENG Fan,LI Haitao. Research advances on epigenetics and cancer metabolism[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 1-16.
[6] CHEN Fei,YU Min,ZHONG Yonghong,HUA Wen,HUANG Huaqiong. The role of neutrophils in asthma[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 123-130.
[7] YAN Jing,ZHANG Tingting,ZHAO Kui. Application of molecular probes in nuclear imaging of neuroendocrine tumors[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 131-137.
[8] ZHANG Mingquan,PAN Junchen,HUANG Peng. Interaction between RAS gene and lipid metabolism in cancer[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 17-22.
[9] HU Xinyang,JIN Hongchuan,ZHU Liyuan. Effect of glutamine metabolism on chemoresistance and its mechanism in tumors[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 32-40.
[10] MENG Ying,WANG Qifei,LYU Zhimin. Cholesterol metabolism and tumor[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 23-31.
[11] ZHU Huiqi,YING Kejing. Tissue factors and venous thromboembolism in cancer patients[J]. J Zhejiang Univ (Med Sci), 2020, 49(6): 772-778.
[12] LIN Cuicui,CHEN Zhengyun,WANG Chunyan,XI Yongmei. Research progress on biomarkers for endometriosis based on lipidomics[J]. J Zhejiang Univ (Med Sci), 2020, 49(6): 779-784.
[13] LI Mengyao,LIU Pan,KE Yuehai,ZHANG Xue. Research progress on macrophage in radiation induced lung injury[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 623-628.
[14] HAN Xue,JIANG Guojun,SHI Qiaojuan. Effects of antihyperglycemics on endothelial progenitor cells[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 629-636.
[15] DUAN Runping,XU Yesheng,ZHENG Libin,YAO Yufeng. Research progress on etiologic diagnosis of ocular viral diseases[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 644-650.