Please wait a minute...
J Zhejiang Univ (Med Sci)  2021, Vol. 50 Issue (1): 23-31    DOI: 10.3724/zdxbyxb-2021-0033
Cholesterol metabolism and tumor
MENG Ying1,2(),WANG Qifei1,2,LYU Zhimin1,2,*()
1. Zhejiang Provincial Key Laboratory of Pancreatic Disease,Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital,Zhejiang University School of Medicine,Hangzhou 310003,China;
2. Institute of Translational Medicine,Zhejiang University School of Medicine,Hangzhou 310029,China
Download: HTML( 26 )   PDF(3450KB)
Export: BibTeX | EndNote (RIS)      


Cholesterol is an important lipid in the body of mammals and an essential component of membrane structures. Cholesterol homeostasis is critical for the maintenance of cellular and body activities, and is mainly regulated by the balance of de novo cholesterol biosynthesis and the exogenous cholesterol uptake. Aberrantly regulated cholesterol metabolism promotes tumor cell proliferation,survival,invasion and metastasis,and their adaptability into the tumor microenvironment. Therefore,targeting cholesterol biosynthesis and reduction of plasma cholesterol levels and cholesterol esterification will provide new strategies for cancer treatment. This review summarizes the current understanding in cholesterol homeostasis regulation and its function in the occurence and development of cancer,as well as current metabolism-targeted cancer treatments.

Key wordsCholesterol      Metabolism      Tumor      Therapy      Review     
Received: 25 November 2020      Published: 16 May 2021
CLC:  R73  
Corresponding Authors: LYU Zhimin     E-mail:;
Cite this article:

MENG Ying,WANG Qifei,LYU Zhimin. Cholesterol metabolism and tumor. J Zhejiang Univ (Med Sci), 2021, 50(1): 23-31.

URL:     OR



关键词: 胆固醇,  代谢,  肿瘤,  治疗,  综述 
Figure 1 Cholesterol biosynthesis胆固醇的生物合成始于两分子的乙酰辅酶A,后者在硫解酶的作用下形成乙酰乙酰辅酶A,再通过β-羟基-β-甲戊二酸单酰辅酶A合酶(HMGCS)与第三分子的乙酰辅酶A缩合形成β-羟基-β-甲戊二酸单酰辅酶A(HMG-CoA);3-羟基-3-甲基戊二酸单酰辅酶A还原酶(HMGCR)将HMG-CoA还原成甲羟戊酸,甲羟戊酸进一步转化为法尼焦磷酸,法尼焦磷酸转化成角鲨烯并被角鲨烯单加氧酶氧化生成2,3-氧化角鲨烯,进而合成胆固醇.
Figure 2 Receptor-mediated cholesterol uptake 低密度脂蛋白(LDL)颗粒与LDL受体(LDLR)在细胞膜结合后,LDL-LDLR复合物首先通过内吞作用到达早期内体(EE);在酸性的EE中,LDLR与LDL颗粒分离返回至细胞膜循环利用,而LDL颗粒则进一步被转运至晚期内体(LE)并最终到达溶酶体;在溶酶体中,LDL来源的胆固醇酯被酸性脂肪酶水解,释放游离胆固醇,随后游离胆固醇被转运至溶酶体膜,并最终到达内质网进行传感、转运或酯化后储存于脂滴,同时也会被转运到线粒体、过氧化物酶体以及细胞膜等其他细胞器.高密度脂蛋白(HDL)颗粒与细胞膜上的B类Ⅰ型清道夫受体(SR-B1)结合后,SR-B1通过自身的疏水通道将HDL来源的胆固醇和胆固醇酯摄取到细胞质膜,并进一步转运到内质网等细胞器.酰基辅酶A:胆固醇酰基转移酶1.
[1]   BROWN M S, RADHAKRISHNAN A, GOLDSTEIN J L . Retrospective on cholesterol homeostasis:the central role of scap[J]. Annu Rev Biochem, 2018, 87(1): 783-807.
doi: 10.1146/annurev-biochem-062917-011852
[2]   IKONEN E . Mechanisms for cellular cholesterol transport:defects and human disease[J]. Physiol Rev, 2006, 86(4): 1237-1261.
doi: 10.1152/physrev.00022.2005
[3]   YOSHIOKA Y,SASAKI J,YAMAMOTO M,et al.Quantitation by (1)H-NMR of dolichol,cholesterol and choline-containing lipids in extracts of normal and phathological thyroid tissue[J]. NMR Biomed,2000,13(7):377–383.DOI:10.1002/1099-1492(200011)13:7<377::aid-nbm658>;2-e .
[4]   LISCUM L, FINER-MOORE J, STROUD R M, et al. Domain structure of 3-hydroxy-3-methylglutaryl coenzyme A reductase,a glycoprotein of the endop- lasmic reticulum[J]. J Biol Chem, 1985, 260(1): 522-530.
doi: 10.1016/S0021-9258(18)89764-2
[5]   KO C W, QU J, BLACK D D, et al. Regulation of intestinal lipid metabolism:current concepts and relevance to disease[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(3): 169-183.
doi: 10.1038/s41575-019-0250-7
[6]   NELSON J K, KOENIS D S, SCHEIJ S, et al. EEPD1 Is a novel LXR target gene in macrophages which regulates ABCA1 abundance and cholesterol efflux[J]. Arterioscler Thromb Vasc Biol, 2017, 37(3): 423-432.
doi: 10.1161/ATVBAHA.116.308434
[7]   MENG Y, HEYBROCK S, NECULAI D, et al. Cholesterol handling in lysosomes and beyond[J]. Trends Cell Biol, 2020, 30(6): 452-466.
doi: 10.1016/j.tcb.2020.02.007
[8]   BROWN M S, GOLDSTEIN J L . A receptor-mediated pathway for cholesterol homeostasis[J]. Science, 1986, 232(4746): 34-47.
doi: 10.1126/science.3513311
[9]   MEYER J M, GRAF G A, VAN DER WESTHUYZEN D R . New developments in selective cholesteryl ester uptake[J]. Curr Opin Lipidology, 2013, 24(5): 386-392.
doi: 10.1097/MOL.0b013e3283638042
[10]   DAS A, BROWN M S, ANDERSON D D, et al. Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis [J/OL]. eLife, 2014, e02882.
doi: 10.7554/eLife.02882
[11]   GOLDSTEIN J L, BROWN M S . The LDL receptor[J]. ATVB, 2009, 29(4): 431-438.
doi: 10.1161/ATVBAHA.108.179564
[12]   LUO J, YANG H, SONG B L . Mechanisms and regulation of?cholesterol homeostasis[J]. Nat Rev Mol Cell Biol, 2020, 21(4): 225-245.
doi: 10.1038/s41580-019-0190-7
[13]   GLASS C, PITTMAN R C, CIVEN M, et al. Uptake of high-density lipoprotein-associated apoprotein A-I and cholesterol esters by 16 tissues of the rat in vivo and by adrenal cells and hepatocytes in vitro[J] . J Biol Chem, 1985, 260(2): 744-750.
doi: 10.1016/S0021-9258(20)71160-9
[14]   GLASS C, PITTMAN R C, WEINSTEIN D B, et al. Dissociation of tissue uptake of cholesterol ester from that of apoprotein A-I of rat plasma high density lipoprotein:selective delivery of cholesterol ester to liver,adrenal,and gonad[J]. Proc Natl Acad Sci USA, 1983, 80(17): 5435-5439.
doi: 10.1073/pnas.80.17.5435
[15]   NECULAI D, SCHWAKE M, RAVICHANDRAN M, et al. Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36[J]. Nature, 2013, 504(7478): 172-176.
doi: 10.1038/nature12684
[16]   HAMPTON R Y . A cholesterol toggle switch[J]. Cell Metab, 2008, 8(6): 451-453.
doi: 10.1016/j.cmet.2008.11.006
[17]   HORTON J D, SHAH N A, WARRINGTON J A, et al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes[J]. Proc Natl Acad Sci USA, 2003, 100(21): 12027-12032.
doi: 10.1073/pnas.1534923100
[18]   GOLDSTEIN J L, DEBOSE-BOYD R A, BROWN M S . Protein sensors for membrane sterols[J]. Cell, 2006, 124(1): 35-46.
doi: 10.1016/j.cell.2005.12.022
[19]   BOVENGA F, SABBà C, MOSCHETTA A . Uncoupling nuclear receptor LXR and cholesterol metabolism in cancer[J]. Cell Metab, 2015, 21(4): 517-526.
doi: 10.1016/j.cmet.2015.03.002
[20]   LI C S, WU W, XIE K K, et al. HMGCR is up-regulated in gastric cancer and promotes the growth and migration of the cancer cells[J]. Gene, 2016, 587(1): 42-47.
doi: 10.1016/j.gene.2016.04.029
[21]   QIU Z, YUAN W, CHEN T, et al. HMGCR positively regulated the growth and migration of glioblastoma cells[J]. Gene, 2016, 576(1): 22-27.
doi: 10.1016/j.gene.2015.09.067
[22]   ASHIDA S, KAWADA C, INOUE K . Stromal regulation of prostate cancer cell growth by mevalonate pathway enzymes HMGCS1 and HMGCR[J]. Oncol Lett, 2017, 14(6): 6533-6542.
doi: 10.3892/ol.2017.7025
[23]   KONG Y, CHENG L, MAO F, et al. Inhibition of cholesterol biosynthesis overcomes enzalutamide resistance in castration-resistant prostate cancer (CRPC)[J]. J Biol Chem, 2018, 293(37): 14328-14341.
doi: 10.1074/jbc.RA118.004442
[24]   LEE J S, ROBERTS A, JUAREZ D, et al. Statins enhance efficacy of venetoclax in blood cancers[J]. Sci Transl Med, 2018, 10(445): eaaq1240.
doi: 10.1126/scitranslmed.aaq1240
[25]   YANG J, WANG L, JIA R . Role of de novo cholesterol synthesis enzymes in cancer[J] . J Cancer, 2020, 11(7): 1761-1767.
doi: 10.7150/jca.38598
[26]   BROWN D N, CAFFA I, CIRMENA G, et al. Squalene epoxidase is a bona fide oncogene by amplification with clinical relevance in breast cancer[J]. Sci Rep, 2016, 6(1): 19435.
doi: 10.1038/srep19435
[27]   CIRMENA G, FRANCESCHELLI P, ISNALDI E, et al. Squalene epoxidase as a promising metabolic target in cancer treatment[J]. Cancer Lett, 2018, 13-20.
doi: 10.1016/j.canlet.2018.03.034
[28]   LIU D, WONG C C, FU L, et al. Squalene epoxidase drives NAFLD-induced hepatocellular carcinoma and is a pharmaceutical target [J/OL]. Sci Transl Med, 2018, 10(437): eaap9840.
doi: 10.1126/scitranslmed.aap9840
[29]   ZHOU T, ZHAN J, FANG W, et al. Serum low-density lipoprotein and low-density lipoprotein expression level at diagnosis are favorable prognostic factors in patients with small-cell lung cancer (SCLC)[J]. BMC Cancer, 2017, 17(1): 269.
doi: 10.1186/s12885-017-3239-z
[30]   GALLAGHER E J, ZELENKO Z, NEEL B A, et al. Elevated tumor LDLR expression accelerates LDL cholesterol-mediated breast cancer growth in mouse models of hyperlipidemia[J]. Oncogene, 2017, 36(46): 6462-6471.
doi: 10.1038/onc.2017.247
[31]   GUILLAUMOND F, BIDAUT G, OUAISSI M, et al. Cholesterol uptake disruption,in association with chemotherapy,is a promising combined metabolic therapy for pancreatic adenocarcinoma[J]. Proc Natl Acad Sci USA, 2015, 112(8): 2473-2478.
doi: 10.1073/pnas.1421601112
[32]   GUO D, REINITZ F, YOUSSEF M, et al. An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway[J]. Cancer Discov, 2011, 1(5): 442-456.
doi: 10.1158/2159-8290.CD-11-0102
[33]   YUE S, LI J, LEE S Y, et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressi- veness[J]. Cell Metab, 2014, 19(3): 393-406.
doi: 10.1016/j.cmet.2014.01.019
[34]   MENARD J A, CHRISTIANSON H C, KUCHARZEWSKA P, et al. Metastasis stimulation by hypoxia and acidosis-induced extracellular lipid uptake is mediated by proteoglycan-dependent endocytosis[J]. Cancer Res, 2016, 76(16): 4828-4840.
doi: 10.1158/0008-5472.CAN-15-2831
[35]   ZELCER N, HONG C, BOYADJIAN R, et al. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor[J]. Science, 2009, 325(5936): 100-104.
doi: 10.1126/science.1168974
[36]   AYLON Y, OREN M . The Hippo pathway,p53 and cholesterol[J]. Cell Cycle, 2016, 15(17): 2248-2255.
doi: 10.1080/15384101.2016.1207840
[37]   XU D, WANG Z, XIA Y, et al. The gluconeogenic enzyme PCK1 phosphorylates INSIG1/2 for lipogenesis[J]. Nature, 2020, 580(7804): 530-535.
doi: 10.1038/s41586-020-2183-2
[38]   OHTAKI S, WANIBUCHI M, KATAOKA-SASAKI Y, et al. ACTC1 as an invasion and prognosis marker in glioma[J]. JNS, 2017, 126(2): 467-475.
doi: 10.3171/2016.1.JNS152075
[39]   IKONEN E . Cellular cholesterol trafficking and compartmentalization[J]. Nat Rev Mol Cell Biol, 2008, 9(2): 125-138.
doi: 10.1038/nrm2336
[40]   LIN C Y, GUSTAFSSON J ? . Targeting liver X receptors in cancer therapeutics[J]. Nat Rev Cancer, 2015, 15(4): 216-224.
doi: 10.1038/nrc3912
[41]   TAO R, XIONG X, DEPINHO R A, et al. Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6[J]. J Lipid Res, 2013, 54(10): 2745-2753.
doi: 10.1194/jlr.M039339
[42]   FLAVENY C A, GRIFFETT K, EL-GENDY B E D M, et al. Broad anti-tumor activity of a small molecule that selectively targets the warburg effect and lipogenesis[J]. Cancer Cell, 2015, 28(1): 42-56.
doi: 10.1016/j.ccell.2015.05.007
[43]   RIOLS F,BERTRAND-MICHEL J. Analysis of oxysterols[J]. Methods Mol Biol,2018,1730:267-275.DOI:10.1007/978-1-4939-7592-1_19 .
[44]   CHEN J, YE Y, LIU P, et al. Suppression of T cells by myeloid-derived suppressor cells in cancer[J]. Human Immunol, 2017, 78(2): 113-119.
doi: 10.1016/j.humimm.2016.12.001
[45]   SAXENA K, SHIPLEY G G . Structural studies of detergent-solubilized and vesicle-reconstituted low-density lipoprotein (LDL) receptor[J]. Biochemi- stry, 1997, 36(50): 15940-15948.
doi: 10.1021/bi971579p
[46]   SIVAPRASAD U, ABBAS T, DUTTA A . Differential efficacy of 3-hydroxy-3-methylglutaryl CoA reductase inhibitors on the cell cycle of prostate cancer cells[J]. Mol Cancer Ther, 2006, 5(9): 2310-2316.
doi: 10.1158/1535-7163.MCT-06-0175
[47]   SONG X, LIU B C, LU X Y, et al. Lovastatin inhibits human B lymphoma cell proliferation by reducing intracellular ROS and TRPC6 expression[J]. BBA- Mol Cell Res, 2014, 1843(5): 894-901.
doi: 10.1016/j.bbamcr.2014.02.002
[48]   TU Y S, KANG X L, ZHOU J G, et al. Involvement of Chk1–Cdc25A-cyclin A/CDk2 pathway in simvastatin induced S-phase cell cycle arrest and apoptosis in multiple myeloma cells[J]. Eur J Pharmacol, 2011, 670(2-3): 356-364.
doi: 10.1016/j.ejphar.2011.09.031
[49]   MENTER D G, RAMSAUER V P, HARIRFOROOSH S, et al. Differential effects of pravastatin and simvastatin on the growth of tumor cells from different organ sites [J/OL]. PLoS One, 2011, 6(12): e28813.
doi: 10.1371/journal.pone.0028813
[50]   XIA Y, XIE Y, YU Z, et al. The Mevalonate pathway is a druggable target for vaccine adjuvant discovery [J/OL]. Cell, 2018, 175(4): 1059-1073.e21.
doi: 10.1016/j.cell.2018.08.070
[51]   ABDEL-RAHMAN O . Statin treatment and outcomes of metastatic pancreatic cancer:a pooled analysis of two phase Ⅲ studies[J]. Clin Transl Oncol, 2019, 21(6): 810-816.
doi: 10.1007/s12094-018-1992-3
[52]   BR?NVALL E, EKBERG S, ELORANTA S, et al. Statin use is associated with improved survival in multiple myeloma:A Swedish population‐based study of 4315 patients[J]. Am J Hematol, 2020, 95(6): 652-661.
doi: 10.1002/ajh.25778
[53]   CARDWELL C R, HICKS B M, HUGHES C, et al. Statin use after colorectal cancer diagnosis and survival:a population-based cohort study[J]. JCO, 2014, 32(28): 3177-3183.
doi: 10.1200/JCO.2013.54.4569
[54]   HAN J Y, LEE S H, YOO N J, et al. A randomized phase II study of gefitinib plus simvastatin versus gefitinib alone in previously treated patients with advanced non-small cell lung cancer[J]. Clin Cancer Res, 2011, 17(6): 1553-1560.
doi: 10.1158/1078-0432.CCR-10-2525
[55]   LEE Y, LEE K H, LEE G K, et al. Randomized phase Ⅱ study of afatinib plus simvastatin versus afatinib alone in previously treated patients with advanced nonadenocarcinomatous non-small cell lung cancer[J]. Cancer Res Treat, 2017, 49(4): 1001-1011.
doi: 10.4143/crt.2016.546
[56]   DUNCAN R E, EL-SOHEMY A, ARCHER M C . Statins and the risk of cancer[J]. JAMA, 2006, 295(23): 2720.
doi: 10.1001/jama.295.23.2720-a
[57]   KIM S T, KANG J H, LEE J, et al. Simvastatin plus capecitabine–cisplatin versus placebo plus capecita- bine–cisplatin in patients with previously untreated advanced gastric cancer:A double-blind randomised phase 3 study[J]. Eur J Cancer, 2014, 50(16): 2822-2830.
doi: 10.1016/j.ejca.2014.08.005
[58]   FARMER J A. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis (the SEAS trial)[J]. Curr Atheroscler Rep,2009,11(2):82–83 .
[59]   JOSEPH L, ROBINSON J G . Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition and the future of lipid lowering therapy[J]. Prog Cardio- vascular Dis, 2015, 58(1): 19-31.
doi: 10.1016/j.pcad.2015.04.004
[60]   NOWAK C, ?RNL?V J . A Mendelian randomization study of the effects of blood lipids on breast cancer risk[J]. Nat Commun, 2018, 9(1): 3957.
doi: 10.1038/s41467-018-06467-9
[61]   REVILLA G, CEDó L, TONDO M, et al. LDL,HDL and endocrine-related cancer:From pathogenic mechanisms to therapies[J/OL]. Seminars Cancer Biol, 2020,
doi: 10.1016/j.semcancer.2020.11.012
[62]   LINCOFF A M, NICHOLLS S J, RIESMEYER J S, et al. Evacetrapib and cardiovascular outcomes in high-risk vascular disease[J]. N Engl J Med, 2017, 376(20): 1933-1942.
doi: 10.1056/NEJMoa1609581
[63]   SCHWARTZ G G, OLSSON A G, ABT M, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome[J]. N Engl J Med, 2012, 367(22): 2089-2099.
doi: 10.1056/NEJMoa1206797
[64]   BARTER P J, CAULFIELD M, ERIKSSON M, et al. Effects of torcetrapib in patients at high risk for coronary events[J]. N Engl J Med, 2007, 357(21): 2109-2122.
doi: 10.1056/NEJMoa0706628
[65]   BOWMAN L, HOPEWELL J C, CHEN F, et al. effects of anacetrapib in patients with atherosclerotic vascular disease[J]. N Engl J Med, 2017, 377(13): 1217-1227.
doi: 10.1056/NEJMoa1706444
[66]   Kamanna S V, Kashyap L M . Mechanism of action of niacin[J]. Am J Cardiology, 2008, 101(8): S20-S26.
doi: 10.1016/j.amjcard.2008.02.029
[1] SHAO Yiming,SU Lide,HAO Rui,WANG Qianqian,NARANMANDURA Hua. Advances on molecular mechanism of hepatitis B virus-induced hepatocellular carcinoma[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 113-122.
[2] HAN Hengyi,FENG Fan,LI Haitao. Research advances on epigenetics and cancer metabolism[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 1-16.
[3] CHEN Fei,YU Min,ZHONG Yonghong,HUA Wen,HUANG Huaqiong. The role of neutrophils in asthma[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 123-130.
[4] YAN Jing,ZHANG Tingting,ZHAO Kui. Application of molecular probes in nuclear imaging of neuroendocrine tumors[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 131-137.
[5] ZHANG Mingquan,PAN Junchen,HUANG Peng. Interaction between RAS gene and lipid metabolism in cancer[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 17-22.
[6] HU Xinyang,JIN Hongchuan,ZHU Liyuan. Effect of glutamine metabolism on chemoresistance and its mechanism in tumors[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 32-40.
[7] YANG Zeran,ZHANG Xin,MA Jie,JIN Li,HE Xujun. Expression of tumor-associated vascular insulin receptor in colorectal cancer and its relationship with tumor pathological features[J]. J Zhejiang Univ (Med Sci), 2020, 49(6): 725-731.
[8] ZHU Huiqi,YING Kejing. Tissue factors and venous thromboembolism in cancer patients[J]. J Zhejiang Univ (Med Sci), 2020, 49(6): 772-778.
[9] LIN Cuicui,CHEN Zhengyun,WANG Chunyan,XI Yongmei. Research progress on biomarkers for endometriosis based on lipidomics[J]. J Zhejiang Univ (Med Sci), 2020, 49(6): 779-784.
[10] LIU Yun,LI Kaikai,WU Juan,LI Hezhou,GENG Xiaoduan,GU Yachuan. Morbidity of congenital heart disease in children with anorectal malformations and related treatment[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 597-602.
[11] LI Mengyao,LIU Pan,KE Yuehai,ZHANG Xue. Research progress on macrophage in radiation induced lung injury[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 623-628.
[12] HAN Xue,JIANG Guojun,SHI Qiaojuan. Effects of antihyperglycemics on endothelial progenitor cells[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 629-636.
[13] DUAN Runping,XU Yesheng,ZHENG Libin,YAO Yufeng. Research progress on etiologic diagnosis of ocular viral diseases[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 644-650.
[14] WU Wei,XU Jian. Research progress on the role of pentraxin 3 in polycystic ovary syndrome[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 637-643.
[15] XU Qinglin,LOU Guodong,WANG Tiantian,ZHANG Lisan. Advances in treatment of narcolepsy[J]. J Zhejiang Univ (Med Sci), 2020, 49(4): 419-424.