Please wait a minute...
J Zhejiang Univ (Med Sci)  2021, Vol. 50 Issue (1): 113-122    DOI: 10.3724/zdxbyxb-2021-0032
    
Advances on molecular mechanism of hepatitis B virus-induced hepatocellular carcinoma
SHAO Yiming1,2(),SU Lide1,2,HAO Rui1,2,WANG Qianqian2,NARANMANDURA Hua1,2,*()
1. College of Pharmaceutical Sciences,Inner Mongolia Medical University,Hohhot 010000,China; 2. School of Medicine,Zhejiang University,Hangzhou 310058,China
Download: HTML( 13 )   PDF(2535KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The pathogenesis of hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) is complicated with the crosstalk of multiple factors and the multi-step processes. The main mechanisms underlying the HBV-induced HCC include:①integration of HBV DNA into the host hepatocyte genome to alter gene function at the insertion site,resulting in host genome instability and expression of carcinogenic truncated proteins;②HBV gene mutations at S,C,and X coding regions in the genome;③HBV X gene-encoded HBx protein activates proto-oncogenes and inhibits tumor suppressor genes,leading to the HCC occurrence. In this article,the recent research progress on the molecular mechanism of HBV-induced HCC is comprehensively reviewed,so as to provide insights into the prevention,early prediction and postoperative adjuvant therapy of HCC.



Key wordsHepatitis B virus      Hepatocellular carcinoma      Gene mutation      Gene integration      Hepatitis B virus X protein      Review     
Received: 23 September 2020      Published: 14 May 2021
CLC:  R735.7  
  R735.7  
  A  
Corresponding Authors: NARANMANDURA Hua     E-mail: 2018120006@stu.immu.edu.cn;narenman@zju.edu.cn
Cite this article:

SHAO Yiming,SU Lide,HAO Rui,WANG Qianqian,NARANMANDURA Hua. Advances on molecular mechanism of hepatitis B virus-induced hepatocellular carcinoma. J Zhejiang Univ (Med Sci), 2021, 50(1): 113-122.

URL:

http://www.zjujournals.com/med/10.3724/zdxbyxb-2021-0032     OR     http://www.zjujournals.com/med/Y2021/V50/I1/113


乙型肝炎病毒诱发肝细胞癌分子机制研究进展

乙型肝炎病毒(HBV)诱导肝细胞癌(HCC)的发生是一个多阶段、多因素相互作用的复杂过程。HBV促进HCC发生、发展的途径主要包括HBV DNA整合至宿主肝细胞基因组从而影响整合位点的基因功能、形成致癌作用的截短蛋白、造成宿主基因组的不稳定,HBV基因组S、C、X区基因突变,HBV X基因编码的HBx蛋白激活原癌基因、抑制抑癌基因等。本文综述了近年来HBV诱发HCC分子机制的研究进展,以期为HCC预防、早期预测及术后辅助治疗提供理论指导。


关键词: 乙型肝炎病毒,  肝细胞癌,  基因突变,  基因整合,  乙型肝炎病毒X蛋白,  综述 
Figure 1 Schematic diagram of hepatocellular carcinoma induced by hepatitis B virus
Figure 2 Schematic diagram of the genomic structure of hepatitis B virus
[1]   THOMAS D L . Global elimination of chronic hepatitis[J]. N Engl J Med, 2019, 380(21): 2041-2050.
doi: 10.1056/NEJMra1810477
[2]   WANG M, WANG Y, FENG X, et al. Contribution of hepatitis B virus and hepatitis C virus to liver cancer in China north areas:experience of the Chinese National Cancer Center[J]. Int J Infect Dis, 2017, 15-21.
doi: 10.1016/j.ijid.2017.09.003
[3]   LARSSON S B, TRIPODI G, RAIMONDO G, et al. Integration of hepatitis B virus DNA in chronically infected patients assessed by Alu-PCR[J]. J Med Virol, 2018, 90(10): 1568-1575.
doi: 10.1002/jmv.25227
[4]   SUNG W K, ZHENG H, LI S, et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma[J]. Nat Genet, 2012, 44(7): 765-769.
doi: 10.1038/ng.2295
[5]   KWA W T, EFFENDI K, YAMAZAKI K, et al. Telomerase reverse transcriptase ( TERT) promoter mutation correlated with intratumoral heterogeneity in hepatocellular carcinoma[J] . Pathol Int, 2020, 70(9): 624-632.
doi: 10.1111/pin.12974
[6]   PEZZUTO F, BUONAGURO L, BUONAGURO F M, et al. Frequency and geographic distribution of TERT promoter mutations in primary hepatocellular carcinoma[J]. Infect Agent Cancer, 2017, 27.
doi: 10.1186/s13027-017-0138-5
[7]   YU J I, CHOI C, HA S Y, et al. Clinical importance of TERT overexpression in hepatocellular carcinoma treated with curative surgical resection in HBV endemic area[J]. Sci Rep, 2017, 7(1): 12258.
doi: 10.1038/s41598-017-12469-2
[8]   ZHANG H, WENG X, YE J, et al. Promoter hypermethylation of TERT is associated with hepatocellular carcinoma in the Han Chinese population[J]. Clin Res Hepatol Gastro- enterol, 2015, 39(5): 600-609.
doi: 10.1016/j.clinre.2015.01.002
[9]   SZE K M F, HO D W H, CHIU Y T, et al. Hepatitis B virus–telomerase reverse transcriptase promoter integration harnesses host elf4,resulting in telomerase reverse transcriptase gene transcription in hepatocellular carcinoma[J/OL]. Hepatology, 2021, 73(1): 23-40.
doi: 10.1002/hep.31231
[10]   GUERRERO R B, ROBERTS L R . The role of hepatitis B virus integrations in the pathogenesis of human hepatocellular carcinoma[J]. J Hepatol, 2005, 42(5): 760-777.
doi: 10.1016/j.jhep.2005.02.005
[11]   EHEDEGO H, MOHS A, JANSEN B, et al. Loss of cyclin E1 attenuates hepatitis and hepatocarcinogene sis in a mouse model of chronic liver injury[J]. Oncogene, 2018, 37(25): 3329-3339.
doi: 10.1038/s41388-018-0181-8
[12]   SONNTAG R, GIEBELER N, NEVZOROVA Y A, et al. Cyclin E1 and cyclin-dependent kinase 2 are critical for initiation,but not for progression of hepatocellular carcinoma[J]. Proc Natl Acad Sci USA, 2018, 115(37): 9282-9287.
doi: 10.1073/pnas.1807155115
[13]   JEGAL M E, JUNG S Y, HAN Y S, et al. C-terminal truncated HBx reduces doxorubicin cytotoxicity via ABCB1 upregulation in Huh-7 hepatocellular carcinoma cells[J] . BMB Rep, 2019, 52(5): 330-335.
doi: 10.5483/BMBRep.2019.52.5.312
[14]   LUDGATE L, LIU K, LUCKENBAUGH L, et al. Cell-free hepatitis B virus capsid assembly dependent on the core protein C-terminal domain and regulated by phosphorylation[J]. J Virol, 2016, 90(12): 5830-5844.
doi: 10.1128/JVI.00394-16
[15]   LI M, SHEN Y, CHEN Y, et al. Characterization of hepatitis B virus infection and viral DNA integration in non‐Hodgkin lymphoma[J]. Int J Cancer, 2020, 147(8): 2199-2209.
doi: 10.1002/ijc.33027
[16]   齐鲁楠,陈圆圆,陈祖舜,等. 广西地区乙肝病毒/黄曲霉毒素B1双暴露相关性肝细胞性肝癌微阵列比较基因组学的研究[J]. 中国癌症防治杂志,2013,5(3):201–210.DOI:10.3969/j.issn.1674-5671.2013.03.04 .
[17]   PANG E, WONG N, LAI P B S, et al. Consistent chromosome 10 rearrangements in four newly established human hepatocellular carcinoma cell lines[J]. Genes Chromosom Cancer, 2002, 33(2): 150-159.
doi: 10.1002/gcc.1220
[18]   LI C L, LI C Y, LIN Y Y, et al. Androgen receptor enhances hepatic telomerase reverse transcriptase gene transcription after hepatitis B virus integration or point mutation in promoter region[J]. Hepatology, 2019, 69(2): 498-512.
doi: 10.1002/hep.30201
[19]   HOSSAIN M G, MAHMUD M M, NAZIR K, et al. PreS1 mutations alter the large HBsAg antigenicity of a hepatitis B virus strain isolated in Bangladesh[J]. Int J Mol Sci, 2020, 21(2): 546.
doi: 10.3390/ijms21020546
[20]   CHEVALIEZ S, RODRIGUEZ C, POITEAU L, et al. Primary resistance of hepatitis B virus to nucleoside and nucleotide analogues[J]. J Viral Hepat, 2019, 26(2): 278-286.
doi: 10.1111/jvh.13025
[21]   金子铮,金方方,文凤,等.血清HBV DNA前S/S区基因突变检测的回顾性临床应用研究[J]. 标记免疫分析与临床,2019,155(9):26–30,49.DOI:CNKI:SUN:BJMY.0.2019-09-004 .
[22]   LIN C M, WANG G M, JOW G M, et al. Functional analysis of hepatitis B virus pre-s deletion variants associated with hepatocellular carcinoma[J]. J Biomed Sci, 2012, 19(1): 17.
doi: 10.1186/1423-0127-19-17
[23]   郑羽飘,钱宝鑫,覃琴,等.乙肝病毒S基因Pre-S区突变的人肝癌细胞HepG2稳定株构建及其生物学行为变化[J]. 山东医药,2019,59(2):36–39. DOI:10.3969/j.issn.1002-266X.2019.02.009 .
[24]   束毅,王伟,代鹏,等.肝癌患者体内乙型肝炎病毒基因组BCP/Pre C区基因突变多样性分析[J]. 病毒学报,2017,33(1):36–43.DOI:10.13242j. cnki.bingduxuebao.003087 .
[25]   PODLAHA O, GANE E, BRUNETTO M, et al. Large-scale viral genome analysis identifies novel clinical associations between hepatitis B virus and chronically infected patients[J]. Sci Rep, 2019, 9(1): 10529.
doi: 10.1038/s41598-019-46609-7
[26]   徐丹丹,张曼,吴黎黎.乙型肝炎病毒基本核心启动子区A1762T/G1764A突变检测的意义[J]. 检验医学与临床,2017,14(1):32–34.DOI:10.3969/j.issn.1672-9455.2017.01.011 .
[27]   MU?OZ A, CHEN J G, EGNER P A, et al. Predictive power of hepatitis B 1762T/1764A mutations in plasma for hepatocellular carcinoma risk in Qidong,China [J]. Carcinogenesis, 2011, 32(6): 860-865.
doi: 10.1093/carcin/bgr055
[28]   HUANG Y, TAI A W, TONG S, et al. HBV core promoter mutations promote cellular proliferation through E2F1-mediated upregulation of S-phase kinase-associated protein 2 transcription[J]. J Hepatol, 2013, 58(6): 1068-1073.
doi: 10.1016/j.jhep.2013.01.014
[29]   GONZáLEZ C, TABERNERO D, CORTESE M F, et al. Detection of hyper-conserved regions in hepatitis B virus X gene potentially useful for gene therapy[J]. World J Gastroenterol, 2018, 24(19): 2095-2107.
doi: 10.3748/wjg.v24.i19.2095
[30]   SALPINI R, SURDO M, CORTESE M F, et al. SAT-195-The novel HBx mutation F30V correlates with HCC in vivo,hampers HBV replicative efficiency and enhances anti-apoptotic activity of HBx N-terminus in vitro[J/OL] . J Hepatol, 2019, 70(1): e716.
doi: 10.1016/S0618-8278(19)31430-6
[31]   SZE K M F, CHU G K Y, LEE J M F, et al. C-terminal truncated hepatitis B virus x protein is associated with metastasis and enhances invasiveness by C-Jun/matrix metalloproteinase protein 10 activation in hepatocellular carcinoma[J]. Hepatology, 2013, 57(1): 131-139.
doi: 10.1002/hep.25979
[32]   QU L S, ZHU J, LIU T T, et al. Effect of combined mutations in the enhancer II and basal core promoter of hepatitis B virus on development of hepatocellular carcinoma in Qidong,China[J]. Hepatol Res, 2014, 44(12): 1186-1195.
doi: 10.1111/hepr.12291
[33]   王玉凤. HBX蛋白与TGF-β致HBV相关性肝病的研究进展[J]. 重庆医学,2017,46(28): 4011–4012.DOI:10.3969/j.issn.1671-8348.2017.28. 044 .
[34]   YUASA R,TAKAHASHI K,DIEN B V,et al. Properties of hepatitis B virus genome recovered from Vietnamese patients with fulminant hepatitis in comparison with those of acute hepatitis[J]. J Med Virol,2000,61(1):23–28. DOI:10.1002/(SICI)1096-9071(200005)61:13.3.CO .
[35]   RANG K Y, RAN B M, WOO C J . Integrin α6 as an invasiveness marker for hepatitis B viral X-driven hepatocellular carcinoma[J]. Cancer Biomark, 2018, 23(1): 135-144.
doi: 10.3233/CBM-181498
[36]   SALERNO D, CHIODO L, ALFANO V, et al. Hepatitis B protein HBx binds the DLEU2 lncRNA to sustain cccDNA and host cancer-related gene transcription[J]. Gut, 2020, 69(11): 2016-2024.
doi: 10.1136/gutjnl-2019-319637
[37]   HEUKERS R, ALTINTAS I, RAGHOENATH S, et al. Targeting hepatocyte growth factor receptor (Met) positive tumor cells using internalizing nanobody-decorated albumin nanoparticles[J]. Biomaterials, 2014, 35(1): 601-610.
doi: 10.1016/j.biomaterials.2013.10.001
[38]   CHEN L, HU L, LI L, et al. Dysregulation of β-catenin by hepatitis B virus X protein in HBV-infected human hepatocellular carcinomas[J]. Front Med China, 2010, 4(4): 399-411.
doi: 10.1007/s11684-010-0170-y
[39]   LIU N, WANG D N, LIU H Y, et al. Potential dynamic analysis of tumor suppressor p53 regulated by Wip1 protein[J/OL]. Chin Phys B, 2020, 29(6): 068704.
doi: 10.1088/1674-1056/ab84d1
[40]   YANG W Y, RAO P S, LUO Y C, et al. Omics-based investigation of diet-induced obesity synergized with HBxSrc,and p53 mutation accelerating hepato- carcinogenesis in zebrafish model[J] . Cancers, 2019, 11(12): 1899.
doi: 10.3390/cancers11121899
[41]   LIU N, LIU Q, YANG X, et al. Hepatitis B virus-upregulated LNC-HUR1 promotes cell proliferation and tumorigenesis by blocking p53 activity[J]. Hepatology, 2018, 68(6): 2130-2144.
doi: 10.1002/hep.30098
[42]   CHOI J H, JEONG H, JANG K L . Hepatitis B virus X protein suppresses all-trans retinoic acid-induced apoptosis in human hepatocytes by repressing p14 expression via DNA methylation[J]. J Gen Virol, 2017, 98(11): 2786-2798.
doi: 10.1099/jgv.0.000958
[43]   DU W, HU H, ZHANG J, et al. The mechanism of MAPK signal transduction pathway involved with electroacupuncture treatment for different diseases[J]. Evid Based Complement Alternat Med, 2019, 1-10.
doi: 10.1155/2019/8138017
[44]   TU W, GONG J, TIAN D, et al. Hepatitis B virus X protein induces SATB1 expression through activation of ERK and p38MAPK pathways to suppress anoikis[J]. Dig Dis Sci, 2019, 64(11): 3203-3214.
doi: 10.1007/s10620-019-05681-9
[45]   蒲长宇,周后龙,彭亮,等.乙型肝炎病毒X蛋白对肝癌细胞MKK3,p38MAPK表达的影响[J]. 现代肿瘤医学,2011,(4):640–644.DOI:10.3969/j.issn.1672-4992.2011.04.06 .
[46]   SOHEL M . Circulating microRNAs as biomarkers in cancer diagnosis[J]. Life Sci, 2020, 117473.
doi: 10.1016/j.lfs.2020.117473
[47]   姚国栋,连源,陈鹏,等. MicroRNA在肿瘤中的研究进展[J]. 河北医药,2019,41(5):771–775.DOI:10.3969/j.issn.1002-7386.2019.05.035 .
[48]   UNNIKRISHNAN A, FREEMAN W M, JACKSON J, et al. The role of DNA methylation in epigenetics of aging[J]. Pharmacol Ther, 2019, 172-185.
doi: 10.1016/j.pharmthera.2018.11.001
[49]   WEI X, XIANG T, REN G, et al. miR-101 is down-regulated by the hepatitis B virus x protein and induces aberrant DNA methylation by targeting DNA methyltransferase 3A[J]. Cell Signal, 2013, 25(2): 439-446.
doi: 10.1016/j.cellsig.2012.10.013
[50]   伍刚,郑波,黄锐,等.HBx 下调 miR-16 家族表达促进肝癌细胞恶性转化[J]. 中国普外基础与临床杂志,2017,24(4): 412–419.DOI:10.7507/1007-9424.201611043 .
[51]   WU G, YU F, XIAO Z, et al. Hepatitis B virus X protein downregulates expression of the miR-16 family in malignant hepatocytes in vitro[J] . Br J Cancer, 2011, 105(1): 146-153.
doi: 10.1038/bjc.2011.190
[52]   ZHANG X, LIU S, HU T, et al. Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression[J]. Hepatology, 2009, 50(2): 490-499.
doi: 10.1002/hep.23008
[53]   KONG G, ZHANG J, ZHANG S, et al. Upregulated microRNA-29a by hepatitis B virus X protein enhances hepatoma cell migration by targeting PTEN in cell culture model[J/OL]. PLoS One, 2011, 6(5): e19518.
doi: 10.1371/journal.pone.0019518
[54]   LAN T, CHANG L, WU L, et al. IL-6 plays a crucial role in HBV infection[J]. J Clin Transl Hepatol, 2015, 3(4): 271-276.
doi: 10.14218/JCTH.2015.00024
[55]   HU Z, LUO D, WANG D, et al. IL-17 activates the IL-6/STAT3 signal pathway in the proliferation of hepatitis B virus-related hepatocellular carcinoma[J]. Cell Physiol Biochem, 2017, 43(6): 2379-2390.
doi: 10.1159/000484390
[56]   QUETIER I, BREZILLON N, REVAUD J, et al. C-terminal-truncated hepatitis B virus X protein enhances the development of diethylnitrosamine-induced hepatocellular carcinogenesis[J]. J Gen Virol, 2015, 96(3): 614-625.
doi: 10.1099/vir.0.070680-0
[57]   吴胜斌,王应灯.人参皂苷Rg1对肾间质纤维化大鼠肾组织肝细胞生长因子及转化生长因子-β1的影响[J]. 中华实用诊断与治疗杂志,2019,33(5): 422–425.DOI:10.13507/j.issn.1674-3474.2019. 05.002 .
[58]   JI L, LIN Z, WAN Z, et al. miR-486-3p mediates hepatocellular carcinoma sorafenib resistance by targeting FGFR4 and EGFR[J]. Cell Death Dis, 2020, 11(4): 250.
doi: 10.1038/s41419-020-2413-4
[59]   YOU N, LIU W, TANG L, et al. Tg737 signaling is required for hypoxia-enhanced invasion and migration of hepatoma cells[J]. J Exp Clin Cancer Res, 2012, 31(1): 75.
doi: 10.1186/1756-9966-31-75
[60]   刘婷,吴俊成,陆伦根,等. STAT3加重TGF-β1诱导的肝癌细胞上皮-间质转化的发生[J]. 肝脏,2018,(2):128–132.DOI:10.3969/j.issn.1008-1704.2018.02.010 .
[61]   ZHANG Q, SONG G, YAO L, et al. miR-3928v is induced by HBx via NF-κB/EGR1 and contributes to hepatocellular carcinoma malignancy by down-regulating VDAC3[J]. J Exp Clin Cancer Res, 2018, 37(1): 14.
doi: 10.1186/s13046-018-0681-y
[62]   KUO C Y, CHIU V, HSIEH P C, et al. Chrysophanol attenuates hepatitis B virus X protein-induced hepatic stellate cell fibrosis by regulating endoplasmic reticulum stress and ferroptosis[J]. J Pharmacol Sci, 2020, 144(3): 172-182.
doi: 10.1016/j.jphs.2020.07.014
[63]   ZHOU L, YANG Y, TIAN D, et al. Oxidative stress-induced 1,N6-ethenodeoxyadenosine adduct formation contributes to hepatocarcinogenesis [J]. Oncol Rep, 2013, 29(3): 875-884.
doi: 10.3892/or.2013.2227
[64]   REN F L, LI W N, XIANG A, et al. Distribution and difference of APOBEC‐induced mutations in the TpCpW context of HBV DNA between HCC and non‐HCC[J]. J Med Virol, 2020, 92(1): 53-61.
doi: 10.1002/jmv.25572
[65]   LIU W, WU J, YANG F, et al. Genetic polymorphisms predisposing the interleukin 6–induced APOBEC3B-UNG imbalance increase HCC risk via promoting the generation of APOBEC-signature HBV mutations [J]. Clin Cancer Res, 2019, 25(18): 5525-5536.
doi: 10.1158/1078-0432.CCR-18-3083
[66]   LIU Y, FENG J, SUN M, et al. Long non-coding RNA HULC activates HBV by modulating HBx/STAT3/miR-539/APOBEC3B signaling in HBV-related hepatocellular carcinoma[J]. Cancer Lett, 2019, 158-170.
doi: 10.1016/j.canlet.2019.04.008
[67]   NIK-ZAINAL S, WEDGE D C, ALEXANDROV L B, et al. Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer[J]. Nat Genet, 2014, 46(5): 487-491.
doi: 10.1038/ng.2955
[68]   XU R, ZHANG X, ZHANG W, et al. Association of human APOBEC3 cytidine deaminases with the generation of hepatitis virus B x antigen mutants and hepatocellular carcinoma[J]. Hepatology, 2007, 46(6): 1810-1820.
doi: 10.1002/hep.21893
[1] HAN Hengyi,FENG Fan,LI Haitao. Research advances on epigenetics and cancer metabolism[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 1-16.
[2] CHEN Fei,YU Min,ZHONG Yonghong,HUA Wen,HUANG Huaqiong. The role of neutrophils in asthma[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 123-130.
[3] YAN Jing,ZHANG Tingting,ZHAO Kui. Application of molecular probes in nuclear imaging of neuroendocrine tumors[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 131-137.
[4] ZHANG Mingquan,PAN Junchen,HUANG Peng. Interaction between RAS gene and lipid metabolism in cancer[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 17-22.
[5] HU Xinyang,JIN Hongchuan,ZHU Liyuan. Effect of glutamine metabolism on chemoresistance and its mechanism in tumors[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 32-40.
[6] MENG Ying,WANG Qifei,LYU Zhimin. Cholesterol metabolism and tumor[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 23-31.
[7] ZHU Huiqi,YING Kejing. Tissue factors and venous thromboembolism in cancer patients[J]. J Zhejiang Univ (Med Sci), 2020, 49(6): 772-778.
[8] LIN Cuicui,CHEN Zhengyun,WANG Chunyan,XI Yongmei. Research progress on biomarkers for endometriosis based on lipidomics[J]. J Zhejiang Univ (Med Sci), 2020, 49(6): 779-784.
[9] LI Mengyao,LIU Pan,KE Yuehai,ZHANG Xue. Research progress on macrophage in radiation induced lung injury[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 623-628.
[10] HAN Xue,JIANG Guojun,SHI Qiaojuan. Effects of antihyperglycemics on endothelial progenitor cells[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 629-636.
[11] DUAN Runping,XU Yesheng,ZHENG Libin,YAO Yufeng. Research progress on etiologic diagnosis of ocular viral diseases[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 644-650.
[12] WU Wei,XU Jian. Research progress on the role of pentraxin 3 in polycystic ovary syndrome[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 637-643.
[13] XU Qinglin,LOU Guodong,WANG Tiantian,ZHANG Lisan. Advances in treatment of narcolepsy[J]. J Zhejiang Univ (Med Sci), 2020, 49(4): 419-424.
[14] JIANG Peiran,WANG Zhiping. Progress on axon regeneration in model organisms[J]. J Zhejiang Univ (Med Sci), 2020, 49(4): 500-507.
[15] CHEN Junyi,YANG Xiang,FANG Xuexian,WANG Fudi,MIN Junxia. The role of ferroptosis in chronic diseases[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 44-57.