Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Gravitational search algorithm based adaptive low emission signal timing
LI Shi-wu1, XU Yi1, WANG Lin-hong1, SUN Wen-cai1, BIE Yi-ming2
1.Transportation School, Jilin University, Changchun 130022, China; 2. School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
Download:   PDF(586KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The importance of the operation time in adaptive low emission signal timing was analyzed combining with adaptive signal timing strategy, and the advantages of  gravitational search algorithm (GSA) over normal search algorithms were analyzed. The adaptive low emission signal timing model and the gravitational search algorithm were referred to propose the GSA based adaptive low emission signal timing method in order to reduce vehicle emission at intersections. The real traffic data were used to verify the method. Results show that under the same accuracy, the vehicle emission of GSA based adaptive low emission signal timing method is 2.82% lower than the vehicle emission of the normal optimization based signal timing method, and the operation time is 36.56% shorter than the normal optimization based signal timing method. The GSA based adaptive low emission signal timing method has better optimization effect and faster operation speed, and is suitable for adaptive low emission optimization.



Published: 10 September 2015
CLC:  U 495  
Cite this article:

LI Shi-wu, XU Yi, WANG Lin-hong, SUN Wen-cai, BIE Yi-ming. Gravitational search algorithm based adaptive low emission signal timing. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1313-1318.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.07.016     OR     http://www.zjujournals.com/eng/Y2015/V49/I7/1313


基于万有引力搜索算法的低排放自适应配时

结合自适应配时策略分析运算时间在低排放自适应配时中的重要性和基本万有引力搜索算法(GSA)较常规搜索算法的优势,以减少交叉口处机动车排放为目的,借鉴低排放自适应配时模型和GSA优化算法原理,提出基于GSA的低排放自适应信号配时方法.以实际交通状态数据为基础数据进行实例验证.结果显示,在相同精度下使用基于GSA配时方法较基于一般优化方法的配时的车均排放低2.82%,运算时间短36.56%.证明了基于GSA的低排放自适应信号配时方法具有较好的优化效果和较高的运算速度,适用于低排放自适应配时的优化.

[1] LIAO Tsai-yun. A fuel-based signal optimization model [J]. Transportation Research Part D, 2013, 23(8): 18.
[2] 李世武, 王琳虹, 郭栋, 等. 基于机动车排放的自适应信号控制模型 [J]. 华南理工大学学报:自然科学版, 2011, 39(3): 101-106.
LI Shi-wu, WANG Lin-hong, GUO Dong, et al. Adaptive signal control model based on vehicle emission [J]. Journal of South China University of Technology: Natural Science Edition, 2011, 39(3): 101-106.
[3] LI Xiu-gang, LI Guo-qiang, PANG Su-seng, et al. Signal timing of intersections using integrated optimization of traffic quality, emissions and fuel consumption: a note [J]. Transportation Research Part D, 2004, 9 (5): 401-407.
[4] KWAK J, PARK B, LEE J. Evaluating the impacts of urban corridor traffic signal optimization on vehicle emissions and fuel consumption [J]. Transportation Planning and Technology, 2012, 35 (2): 145-160.
[5] 赵伟涛, 杨威, 岳一博. 考虑车辆排放的城市信号交叉口优化控制研究 [J]. 武汉理工大学学报: 交通科学与工程版, 2012, 36(5): 911-915.
ZHAO Wei-tao, YANG Wei, YUE Yi-bo. Optimization research on signal timing for urban intersection by considering vehicle emission [J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2012, 36(5): 911-915.
[6] 首艳芳, 徐建闽. 信号交叉口多目标动态决策模型及其优化方法 [J]. 公路交通科技,2012,29(11): 92-97.
SHOU Yan-fang, XU Jian-min. Multi-objective dynamic decision-making model of signalized intersection and its optimization method [J]. Journal of Highway and Transportation Research and Development, 2012, 29(11): 92-97.
[7] BIE Y, WANG L, WANG D, et al. A signal coordination algorithm for two adjacent intersections based on approximate dynamic programming [J]. Journal of Southeast University, 2012, 28(1): 112-118.
[8] ESMAT R, HOSSEIN N P, SAEID S. GSA: a gravitational search algorithm [J]. Information Sciences, 2009, 179 (13): 2232-2248.
[9] ESMAT R, HOSSEIN N P, SAEID S. BGSA: binary gravitational search algorithm [J]. Natural Computing, 2010, 9(3): 727-745.
[10] ZHAO Wei-guo. Adaptive image enhancement based on gravitational search algorithm [J]. Procedia Engineering, 2011, 15(3): 3288-3292.
[11] ESMAT R, HOSSIEN N P, SAEID S. Filter modeling using gravitational search algorithm [J]. Engineering Applications of Artificial Intelligence, 2011, 24(1): 117-122.
[12] ZHANG Wei-ping, NIU Pei-feng, LI Guo-qiang. Forecasting of turbine heat rate with online least squares support vector machine based on gravitational search algorithm [J]. Knowledge-Based Systems, 2013, 39 (2): 34-44.
[13] 牛培峰, 李鹏飞, 李国强, 等. 基于万有引力优化的支持向量机模型在板形识别中的应用[J]. 钢铁, 2013, 47(12): 45-49.
NIU Pei-feng, LI Peng-fei, LI Guo-qiang, et al. Application of GSA-SVR model in flatness pattern recognition [J]. Iron and Steel, 2013, 47(12): 45-49.
[14] BEHRANG M A, ASSAREH E, GHALAMBAZ M, et al. Forecasting future oil demand in Iran using GSA (gravitational search algorithm) [J]. Energy, 2011, 36(9): 5649-5654.
[15] DUMAN S, GVEN U, YRKEREN N. Gravitational search algorithm for economic dispatch with valve-point effects [J]. International Review of Electrical Engineering, 2010, 5(6): 2890-2895.

[1] SUN Wen-cai, YANG Zhi-fa, LI Shi-wu, XU Yi, GUO Meng-zhu, WEI Xue-xin. Driver fixation area division oriented DBSCAN-MMC method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1455-1461.