Microstructure and feature of pores for corner of L-shape CFRP components" /> Microstructure and feature of pores for corner of L-shape CFRP components" /> Microstructure and feature of pores for corner of L-shape CFRP components" /> L型CFRP构件R区微观形态及孔隙特征
Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Microstructure and feature of pores for corner of L-shape CFRP components
CHEN Yue-chao, ZHOU Xiao-jun, YANG Chen-long, LI-Zhao
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1693KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The microstructure of the corner of L-shape carbon fiber reinforced polymer (CFRP) components was observed. The number of components was eight. The radius of the corner of every component is 10 mm and the thickness is 5 mm. The porosity of the components ranges from 0.54% to 2.48%. The main types of micro-defects as well as the feature of morphology and distribution of the pores which were in the corner of L-shape CFRP components were analyzed based on the observation. The rich resin, micro-crack and pore are the main types of micro-defects in the corner of L-shape CFRP components. The pores are mainly distributed in rich resin regions or in fiber layers. The pores in interlayers are very rare. The length of the observed pores ranges from 12 to 411 μm, and the width of the pores ranges from 7 to 289 μm. The length, width and area of the pores all increase as the pore content rises. For the statistical data of a single sample, the length and width of the pores respectively has approximate lognormal distribution relationship with the number percentage of pores. As the pore content rises, the number of pores which are irregular and large increases, and the shape factor of the pores and the pore width to length ratio all tend to decrease.



Published: 01 October 2014
CLC:  TB 332  
  V 258  
Cite this article:

CHEN Yue-chao, ZHOU Xiao-jun, YANG Chen-long, LI-Zhao.

Microstructure and feature of pores for corner of L-shape CFRP components
. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(10): 1775-1880.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.10.009     OR     http://www.zjujournals.com/eng/Y2014/V48/I10/1775


L型CFRP构件R区微观形态及孔隙特征

对8块L型CFRP构件R区的微观组织形态进行观察,其中构件R区的拐角半径均为10 mm,厚度均为5 mm,孔隙率为0.54%~2.48%,在观察的基础上分析R区的主要微缺陷类型及孔隙形态分布特征.结果表明:L型CFRP构件R区的主要缺陷类型为富树脂、微裂纹和孔隙;孔隙主要分布在富树脂区和纤维层内,层间孔隙很少;所观察构件的孔隙长度为12~411 μm,孔隙宽度为7~289 μm,孔隙率越大,孔隙平均长度、宽度和面积越大;对于单个样本的统计数据,孔隙长度和宽度分别与孔隙数量百分比之间存在近似的对数正态分布关系;随着孔隙率的增大,形状不规则、面积较大的孔隙增多,孔隙的形状因子和宽长比总体上都有减小的趋势.

[1] 刘亚雄,欧阳国恩,张华新,等. 透光复合材料、碳纤维复合材料及其应用[M]. 北京:化学工业出版社,2006.
[2] 刘继忠,周晓军,华志恒. 碳纤维复合材料孔隙率的脉冲反射法超声衰减测试模型[J].浙江大学学报:工学版, 2006,40(11): 1878-1882.
LIU Ji-zhong, ZHOU Xiao-jun, HUA Zhi-heng. Pulse-echo based ultrasonic attenuation model for porosity test of carbon fiber composites [J]. Journal of Zhejiang University: Engineering Science, 2006, 40(11):  1978-1882.
[3] 朱洪艳,李地红,张东兴,等.固化压力对碳纤维复合材料层压板的孔隙和力学性能的影响[J].固体火箭技术,2009,32(6): 694-697.
ZHU Hong-yan, LI Di-hong, ZHANG Dong-xing, et al. Effect of curing pressure on voids and mechanical properties of carbon fiber reinforced composite laminates [J]. Journal of Solid Rocket Technology, 2009, 32(6): 694-697.
[4] 张翔,陈军,林莉,等. 复合材料孔隙形貌特征对超声波散射衰减影响的分析[J].中国机械工程,2010,21(14): 1735-1741.
ZHANG Xiang, CHEN Jun, LIN Li, et al. Effects on ultrasonic scattering attenuation coefficient of morphological characteristics of voids in composite materials [J]. China Mechanical Engineering, 2010, 21(14): 1735-1741.
[5] 华志恒,周晓军,刘继忠.碳纤维复合材料(CFRP)孔隙的形态特征[J].复合材料学报,2005, 22(6): 103-107.
HUA Zhi-heng, ZHOU Xiao-jun, LIU Ji-zhong. Morphology of pores in carbon fiber reinforced plastics [J]. Acta Materiae Compositae Sinica, 2005, 22(6): 103-107.
[6] 刘继忠,蒋志峰,华志恒.含孔隙形态分布特征的孔隙率超声衰减测试建模[J].航空材料学报,2006,26(2): 67-71.
LIU Ji-zhong, JIANG Zhi-feng, HUA Zhi-heng. A morphological study based ultrasonic attenuation model of carbon fiber reinforced plastics porosity testing [J]. Journal of Aeronautical Materials, 2006, 26(2): 67-71.
[7] 田宏涛.碳纤维复合材料孔隙几何形貌定量分析与研究[D].大连:大连理工大学,2010: 23-52.
TIAN Hong-tao. Quantitative analysis and investigation on geometrical morphology of pore in CFRP [D]. Dalian: Dalian University of Technology, 2010: 23-52.
[8] HUBERT P, VAZIRI R, POURSARTIP A. A two-dimension flow model for the process simulation of complex shape composite laminates [J]. International Journal for Numerical Methods in Engineering,1999,44(1): 126.
[9] HUBERT P, POURSARTIP A. Aspects of the compaction of composite angle laminates: an experimental investigation [J]. Journal of Composite Materials, 2001, 35(1): 226.
[10] 邓火英,张佐光,顾轶卓,等. L形层板真空袋成型缺陷的实验研究[J].复合材料学报,2007, 24(4): 34-39.
DENG Huo-ying, ZHANG Zuo-guang, GU Yi-zhuo, et al. Experimental research on defects of L-shape laminates in vacuum-bag process [J]. Acta Materiae Compositae Sinica, 2007, 24(4): 34-39.
[11] LI Yan-xia, LI Min, GU Yi-zhuo, et al. Numerical and experimental study on the effect of lay-up type and structural elements on thickness uniformity of L-shaped laminates [J]. Applied Composite Materials, 2009, 16(2): 101-115.
[12] GB/T 3365-2008. 碳纤维增强塑料孔隙含量和纤维体积含量试验方法[S]. 北京:中国标准出版社,2008.
[13] STONE D E W, CLARKE B. Ultrasonic attenuation as a measure of void content in carbon-fibre reinforced plastics [J]. Nondestructive Testing, 1975(6): 137-145.
No related articles found!