Please wait a minute...
J4  2013, Vol. 47 Issue (10): 1777-1783    DOI: 10.3785/j.issn.1008-973X.2013.10.012
    
Design of fully differential operational amplifier with low cost common feedback circuit
LEI Jian-ming, HU Bei-wen, GUI Han-shu, ZHANG Le
Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A fully differential operational amplifier (AMP) for pipelined ADC was designed. A simple common mode feedback (CMFB) structure by adjusting the feedback quantity and sharing the differential signal path was proposed to improve the loop gain. The auto-oscillation of the circuit was prevented by reducing the feedback coefficient, and the high design cost and high design difficulty caused by the application of the compensation capacitance were avoided. The amplifier contains a two-stage folded cascode architecture and is frequency compensated, and the output stage uses a push-pull class-AB structure. The amplifier uses the SMIC 0.35 μm technology. The post-layout simulation results show that the open gain is up to 100 dB, the unity gain bandwidth (UGB) is 359 MHz with a 3 pF load, the phase margin (PM) is 68° and the settling time is 12.3 ns. All the specifications meet the design requirements of the ADC. This fully differential operational amplifier is appropriate to be used in the inter-stage gain circuit and the sample-hold circuit of high accuracy pipelined ADC.



Published: 01 October 2013
CLC:  TN 432  
Cite this article:

LEI Jian-ming, HU Bei-wen, GUI Han-shu, ZHANG LeLEI Jian-ming, HU Bei-wen, GUI H. Design of fully differential operational amplifier with low cost common feedback circuit. J4, 2013, 47(10): 1777-1783.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2013.10.012     OR     http://www.zjujournals.com/eng/Y2013/V47/I10/1777


采用新型低成本共模反馈电路的全差分运放设计

设计应用于流水线型ADC的全差分运算放大器. 运放中共模反馈电路采用调节反馈深度和共用差分信号通路的新型结构来实现,用简单的结构实现了高环路增益,通过降低反馈系数的方法防止电路产生自激振荡,避免了因引用补偿电容带来的高成本和高设计难度.放大器采用两级折叠共源共栅结构并进行频率补偿,输出级采用推挽式AB类结构.设计的全差分运算放大器基于中芯国际(SMIC)0.35 μm工艺.后仿结果表明,放大器直流增益为100 dB,负载为3 pF时单位增益带宽为359 MHz,相位裕度为68°,建立时间为12.3 ns,满足ADC所要求的性能指标,适用于高精度流水线型ADC中的级间增益电路和采样保持电路.

[1] HATI M K, BHATTACHARYYA T K. Design of a low power, high speed complementary input folded regulated cascode OTA for a parallel pipeline ADC [C]∥ IEEE Computer Society Annual Symposium. Chennai: IEEE, 2011: 114-119.

[2] KIM Y J, CHOI H C, AHN G C, et al. A 12 bit 50MS/s CMOS nyquist A/D converter with a fully differential class-AB switched op-amp [J]. IEEE Journal of Solid-State Circuits, 2010, 45(3): 620-628.

[3] 唐宁,杨秋玉,翟江辉. 高性能全差分运算放大器设计[J]. 微电子学,2011, 41(5): 636-639.

TANG Ning, YANG Qiu-yu, ZHAI Jiang-hui. Design of a high performance fully differential operational amplifier [J]. Microelectronics, 2011, 41(5): 636-639.

[4] 尹浩,陈必江,李靖,等. 适用于全差分运算放大器的两级共模反馈结构[J]. 微电子学,2011, 41(2): 172-175.

YIN Hao, CHEN Bi-jiang, LI Jing, et al. Two-stage common-mode feedback structures for fully differential operational amplifier [J]. Microelectronics, 2011, 41(2): 172-175.

[5] RAHIM S A E A, AZMI I M. A CMOS single stage fully differential folded cascode amplifier employing gain boosting technique [C] ∥13th International Symposium on Integrated Circuits. Singapore: IEEE, 2011: 234-237.

[6] 朱臻,王涛,易婷,等. 一种用于高速A/D转换器的全差分、低功耗CMOS运算跨导放大器[J]. 复旦学报:自然科学版,2001, 40(1): 79-85.

ZHU Zhen, WANG Tao, YI Ting, et al. A full differential, low power consumption CMOS operational transconductance amplifier (OTA) [J]. Journal of Fudan University: Natural Science, 2001, 40(1): 79-85.

[7] WANG Jia-cheng, ZHU Di, GUO Le-le, et al. A 22mW 10-bit 150-MS/s pipelined ADC in 1.2V 65nm CMOS [C] ∥10th International Conference on Solid-State and Integrated Circuit Technology. Shanghai: IEEE, 2010: 454-456.

[8] PERMATASARI S I, HUTABARAT M T, ADISENO A. Design of 12-bit, 40MS/S pipeline ADC for application in WiMAX transceiver [C]∥ International Conference on Electrical Engineering and Informatics. Bandung: IEEE, 2011: 14.

[9] ALLEN P E, HOLBERG D R. CMOS模拟集成电路设计[M]. 2版. 北京:电子工业出版社,2005.

[10] 王会影,徐祥柱,张雨河,等. 一种适用于D类音频功放的全差分运算放大器[J]. 微电子学,2012, 42(1): 13-16.

WANG Hui-ying, XU Xiang-zhu, ZHANG Yu-he, et al. A fully-differential operational amplifier for class D audio amplifier [J]. Microelectronics, 2012, 42(1): 13-16.

[11] 陈殿玉,岂飞涛,秦世才.一种提高共模反馈稳定性的新方法[J].南开大学学报:自然科学版,2007,40(2): 8386.

CHEN Dian-yu, QI Fei-tao, QIN Shi-cai. A new technique to improve the stability of the CMFB [J]. Acta Scientiarum Naturallum: Universitatis Nakaiensis, 2007, 40(2): 83-86.

[12] 成东波,孙玲玲,洪慧,等. 一种带共模反馈电路的套筒式全差分运算放大器[J]. 微电子学,2011, 41(3): 336-340.

CHENG Dong-bo, SUN Ling-ling, HONG Hui, et al. A telescopic fully differential amplifier with CMFB circuit [J]. Microelectronics, 2011, 41(3): 336-340.

[13] 宋奇伟,张正平.一种新型高速CMOS全差分运算放大器设计[J].现代电子技术,2012, 35(4): 166-172.

SONG Qi-wei, ZHANG Zheng-ping. Design of a novel high-speed fully-differential CMOS op-amp [J]. Modern Electronics Technique, 2012, 35(4): 166-172.

[14] 蔡坤明,何杞鑫,陶吉利,等.一种增益增强型套筒式运算放大器的设计[J].电子技术应用,2010, 36(5): 66-69.

CAI Kun-ming, HE Qi-xin, TAO Ji-li, et al. Design of a gain-boosted telescopic operational amplifier [J]. Application of Integrated Circuits, 2010, 36(5): 66-69.

[1] HANG Guo-qiang, LI Jin-xuan, WANG Guo-fei. A novel sample and hold circuit using clocked neuron-MOS scheme[J]. J4, 2012, 46(2): 333-337.
[2] HAN Yan, LIAO Lu, HUANG Xiao-wei, ZHANG Hao, WANG Hao. Design of analog circuits in multi-bit quantized audio DAC[J]. J4, 2011, 45(9): 1571-1575.
[3] XIAO Lin-rong, CHEN Xie-xiong, YING Shi-yan. QCA circuit design of optimal universal logic gate ULG.2
based on modular methodology
[J]. J4, 2011, 45(6): 1032-1037.
[4] XU Yang, CHEN Ji-Zhong. New method for low power sequential circuit design
based on clock gating
[J]. J4, 2010, 44(9): 1724-1729.
[5] XU Ke-Jun, HU Wen-Yao, CHEN Ji-Zhong, et al. Task scheduling model and algorithm based on dual-Vdd dynamic reconfigurable FPGA[J]. J4, 2010, 44(2): 300-304.
[6] HANG Guo-Jiang, YING Shi-Pan. Novel current-mode CMOS quaternary edge-triggered flip-flops[J]. J4, 2009, 43(11): 1970-1974.
[7] ZHANG Dan-Yan, TUN Xiao-Bei, DIAO Meng-Lian, et al. Integrated circuit design for solar cell maximum power point tracking[J]. J4, 2009, 43(11): 2000-2005.