Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2010, Vol. 11 Issue (1): 56-62    DOI: 10.1631/jzus.C0910176
    
Modeling of hydraulic turbine systems based on a Bayesian-Gaussian neural network driven by sliding window data
Yi-jian LIU*,1, Yan-jun FANG2, Xue-mei ZHU1
1 School of Electric & Automation Engineering, Nanjing Normal University, Nanjing 210042, China 2 Department of Automation, Wuhan University, Wuhan 430072, China
Modeling of hydraulic turbine systems based on a Bayesian-Gaussian neural network driven by sliding window data
Yi-jian LIU*,1, Yan-jun FANG2, Xue-mei ZHU1
1 School of Electric & Automation Engineering, Nanjing Normal University, Nanjing 210042, China 2 Department of Automation, Wuhan University, Wuhan 430072, China
 全文: PDF(337 KB)  
摘要: In this paper, a novel Bayesian-Gaussian neural network (BGNN) is proposed and applied to on-line modeling of a hydraulic turbine system (HTS). The new BGNN takes account of the complex nonlinear characteristics of HTS. Two redefined training procedures of the BGNN include the off-line training of the threshold matrix parameters, optimized by swarm optimization algorithms, and the on-line BGNN predictive application driven by the sliding window data method. The characteristics models of an HTS are identified using the new BGNN method and simulation results are presented which show the effectiveness of the BGNN in addressing modeling problems of HTS.
关键词: Bayesian-Gaussian neural network (BGNN)Hydraulic turbineModelingSliding window data    
Abstract: In this paper, a novel Bayesian-Gaussian neural network (BGNN) is proposed and applied to on-line modeling of a hydraulic turbine system (HTS). The new BGNN takes account of the complex nonlinear characteristics of HTS. Two redefined training procedures of the BGNN include the off-line training of the threshold matrix parameters, optimized by swarm optimization algorithms, and the on-line BGNN predictive application driven by the sliding window data method. The characteristics models of an HTS are identified using the new BGNN method and simulation results are presented which show the effectiveness of the BGNN in addressing modeling problems of HTS.
Key words: Bayesian-Gaussian neural network (BGNN)    Hydraulic turbine    Modeling    Sliding window data
收稿日期: 2009-03-29 出版日期: 2009-11-30
CLC:  TP18  
基金资助: Project  (Nos. 60704024 and 60772107) supported by the  National Natural Science Foundation of China
通讯作者: Yi-jian LIU     E-mail: liuyijian_2002@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Yi-jian LIU
Yan-jun FANG
Xue-mei ZHU

引用本文:

Yi-jian LIU, Yan-jun FANG, Xue-mei ZHU. Modeling of hydraulic turbine systems based on a Bayesian-Gaussian neural network driven by sliding window data. Front. Inform. Technol. Electron. Eng., 2010, 11(1): 56-62.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C0910176        http://www.zjujournals.com/xueshu/fitee/CN/Y2010/V11/I1/56

[1] Ke GUO, Xia-bi LIU, Lun-hao GUO , Zong-jie LI, Zeng-min GENG. A new constrained maximum margin approach to discriminative learning of Bayesian classifiers[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(5): 639-650.
[2] Chun-lin ZHOU, Bo-xing WANG, Hong-xiang ZHOU, Jing-lan LI, Rong XIONG. Dynamic modeling of a wave glider[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(9): 1295-1304.
[3] Jian-zhi LI , Bo AI , Rui-si HE , Qi WANG , Mi YANG , Bei ZHANG , Ke GUAN , Dan-ping HE , Zhang-dui ZHONG , Ting ZHOU , Nan LI. Indoor massive multiple-input multiple-output channel characterization and performance evaluation[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(6): 773-787.
[4] Wei ZHANG , Jia-yu ZHUANG , Xi YONG , Jian-kou LI , Wei CHEN , Zhe-min LI. Personalized topic modeling for recommending user-generated content[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(5): 708-718.
[5] Feng SHENG, Liang DOU, Zong-yuan YANG. Mechanized semantics and refinement of UML-Statecharts[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(11): 1773-1783.
[6] Hong-yang LU , Qie-gen LIU, Yu-hao WANG , Xiao-hua DENG. A two-stage parametric subspace model for efficient contrast-preserving decolorization[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(11): 1874-1882.
[7] Hong SONG, Jia-heng ZHANG, Ping YANG, Hao-cai HUANG, Shu-yue ZHAN, Teng-jun LIU, Yi-lu GUO, Hang-zhou WANG, Hui HUANG, Quan-quan MU, Mei-fen FANG, Ming-yuan YANG. Modeling of a dynamic dual-input dual-output fast steering mirror system[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(10): 1488-1498.
[8] Mo-fei Song, Zheng-xing Sun, Yan Zhang, Fei-qian Zhang. Synthesis of 3D models by Petri net[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(7): 521-529.
[9] Ying-mei Wei, Lai Kang, Bing Yang, Ling-da Wu. Applications of structure from motion: a survey[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(7): 486-494.
[10] Gabriela Magureanu, Madalin Gavrilescu, Dan Pescaru. Validation of static properties in unified modeling language models for cyber physical systems[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(5): 332-346.
[11] Xiao-bo Li, Yong-lin Lei, Hans Vangheluwe, Wei-ping Wang, Qun Li. A multi-paradigm decision modeling framework for combat system effectiveness measurement based on domain-specific modeling[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(5): 311-331.
[12] Li-heng Lou, Ling-ling Sun, Jun Liu, Hai-jun Gao. An efficient PSP-based model for optimized cross-coupled MOSFETs in voltage controlled oscillator[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(3): 205-213.
[13] Liang Dou, Qiang Liu, Zong-yuan Yang. A metamodeling approach for pattern specification and management[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(10): 743-755.
[14] Najmeh Eghbal, Naser Pariz, Ali Karimpour. Uniform modeling of parameter dependent nonlinear systems[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(11): 850-858.
[15] Behrouz Afzal, Behzad Ebrahimi, Ali Afzali-Kusha, Massoud Pedram. An accurate analytical I-V model for sub-90-nm MOSFETs and its application to read static noise margin modeling[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(1): 58-70.