Please wait a minute...
浙江大学学报(工学版)
机械与能源工程     
考虑热机耦合的排气歧管多目标优化设计
张俊红, 张玉声, 王健, 徐喆轩, 胡欢, 赵永欢
1.天津大学 内燃机燃烧学国家重点实验室,天津 300072; 
2.天津大学 仁爱学院机械工程系,天津 301636
Multi-objective optimization design for exhaust manifold considering thermo-mechanical coupling
ZHANG Jun-hong, ZHANG Yu-sheng, WANG Jian, XU Zhe-xuan,HU Huan, ZHAO Yong-huan
1. State Key Laboratory of Engines, Tianjin University, Tianjin 300072 China;
2. Mechanical Engineering Department of Tianjin University Ren’Ai College, Tianjin 301636 China
 全文: PDF(4899 KB)   HTML
摘要:

为了研究温度及热应力分布对排气歧管的振动特性及疲劳寿命的影响,对汽油机排气歧管进行基于热机耦合的频率响应分析.研究发现,由于温度及热应力的不均匀分布会改变结构的刚度,热载荷的存在对传递函数峰值频率及应力幅值均产生了较大影响.热载荷与机械载荷耦合作用下的振动疲劳寿命较不考虑热载荷的振动疲劳寿命低42%,热机耦合在疲劳寿命分析中有着显著的作用,不可忽视.为了优化排气歧管的振动特性并延长其使用寿命,对排气歧管支架进行拓扑优化及多目标形貌优化.通过拓扑优化寻找最佳传力路径;在拓扑优化的基础上以提高排气歧管疲劳寿命为总目标,以提高危险频率段内的1、2、3、6阶固有频率为子目标,通过加权指数法建立目标函数,对支架进行多目标形貌优化确定加强筋位置.进行多目标优化后的排气歧管支架对提高排气歧管振动疲劳寿命效果明显,疲劳寿命较优化前增加了31.2 %.

Abstract:

Frequency response analysis based on thermo-mechanical coupling was conducted on a gasoline engine exhaust manifold in order to study the effect of temperature and thermal stress on vibration characteristic and fatigue life of exhaust manifold. Results show that the stress range and peak frequency are significantly changed when thermal load is taken into consideration, since different distributions of temperature and thermal stress lead to different structure stiffness. The vibration fatigue life under thermo-mechanical coupling is 42% lower than that without considering thermal load. Therefore, the thermal-mechanical coupling has significant effect on fatigue life, which can’t be ignored. Topology optimization and multi-objective topography optimization were carried out on the bracket of exhaust manifold to optimize the vibration characteristics and extend the working life. Topology optimization was carried out to find the best force transferring path. The multi-objective topography optimization was carried out to define the stiffener, and its objective function was established based on the exponential weighted method. The optimization goal is to extend the fatigue life of the exhaust manifold and the subgoals are to increase the structural natural frequency of 1st/2nd/3rd/6th order. The optimization effect is obvious; the optimized exhaust manifold’s fatigue life is 31.2 % higher than that of the original design.

出版日期: 2017-06-11
CLC:  TK 413  
基金资助:

国家“863”高技术研究发展计划资助项目(2014AA041501).

作者简介: 张俊红(1962—),女,教授,博士,从事内燃机振动噪声及其控制研究. ORCID: 0000-0001-8125-2397. E-mail: zhangjh@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

张俊红, 张玉声, 王健, 徐喆轩, 胡欢, 赵永欢. 考虑热机耦合的排气歧管多目标优化设计[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.06.013.

ZHANG Jun-hong, ZHANG Yu-sheng, WANG Jian, XU Zhe-xuan,HU Huan, ZHAO Yong-huan. Multi-objective optimization design for exhaust manifold considering thermo-mechanical coupling. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.06.013.

参考文献(References):
[1] 杨云龙,曹占义,崔雷,等.汽车发动机排气歧管用耐热铸造合金的研究与发展[J].汽车工艺与材料,2009 (5): 1-4.
YANG Yun-long, CAO Zhan-yi, CUI Lei, et al. The development and research of the casting heat resistant alloy used in car exhaust manifold [J]. Automobile Technology and Material, 2009 (5): 1-4.
[2] SISSA S, GIACOPINI M, ROSI R. Low-cycle thermal fatigue and high-cycle vibration fatigue life estimation of a diesel engine exhaust manifold [J]. Procedia Engineering, 2014, 74: 105-112.
[3] SANTACREU P O, FAIVRE L, ACHER A. Life prediction approach for stainless steel exhaust manifold [J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2012, 5: 904-910.
[4] 袁懋荣.排气歧管热负荷与机械振动负荷的耦合分析[D].长春:吉林大学,2015.
YUAN Mao-rong. The couping analysis on thermal load and mechanical vibration load of exhaust manifold [D]. Changchun: Jilin University, 2015.
[5] HA T K, JEONG H T, SUNG H J. High temperature bending fatigue behavior of stainless steels for automotive exhaust [J]. Journal of Materials Processing Technology, 2007, 187: 555-558.
[6] WATANABE Y, SHIRATANI K, IWANAGA S, et al. Thermal fatigue life prediction for stainless steel exhaust manifold [R]. SAE Technical Paper, 1998.
[7] MICHIUE M, NISHIO K, SUGIURA H, et al. Prediction of Vibration Fatigue Life for Motorcycle Exhaust Systems [R]. SAE Technical Paper, 2011.
[8] DELPRETE C, SESANA R, VERCELLI A. Multiaxial damage assessment and life estimation: application to an automotive exhaust manifold [J]. Procedia Engineering, 2010, 2(1): 725-734.
[9] 刘勇.某发动机排气歧管的热疲劳分析与优化[D].重庆:重庆理工大学, 2015.
LIU Yong. Thermal fatigue analysis and optimization of an engine exhaust manifold [D]. Chongqing: Chongqing University, 2015.
[10] 马学军.柴油机排气歧管的振动疲劳分析[D].太原:中北大学, 2016.
MA Xu-jun. Vibration fatigue analysis of diesel engine exhaust manifold [D]. Taiyuan: North University of China, 2016.
[11] 李建华. 面向轻量化的发动机排气系统结构优化设计 [D]. 武汉:武汉理工大学, 2012.
LI Jian-hua.Optimized design of structure for exhaust systerm of engine based on lighting [D]. Wuhan: Wuhan University of Technology, 2012.
[12] 范文杰,范子杰,苏瑞意.汽车车架结构多目标拓扑优化方法研究[J].中国机械工程,2008,19(12): 1505-1508.
FAN Wen-jie, FAN Zi-jie, SU Rui-yi. Research on multi-objective topology optimization on bua chassis frame [J]. China Mechine Press,2008, 19(12):1505-1508.
[13] CARPINELLI G, CARAMIA P, MOTTOLA F, et al. Exponential weighted method and a compromise programming method for multiobjective operation of plugin vehicle aggregators in microgrids [J]. International Journal of Electrical Power and Energy Systems, 2014, 56: 374-384.
[14] 阚萍,李源源,吴道俊,等.基于频率响应分析的越野车车架疲劳寿命预估[J].车辆与动力技术,2011,122(2): 9-13.
KAN Ping, LI Yuan-yuan, WU Dao-jun, et al. Fatigue life prediction of SUV frame based on frequency response analysis [J]. Vehicle and Power Technology, 2011, 122(2): 9-13.
[15] 王佳莹.考虑温度影响下结构振动疲劳寿命估算[D].南昌:南昌航空大学, 2012.
WANG Jia-ying. Estimation of structural vibration fatigue life with temperature involved [D]. Nanchang: Nanchang Hangkong University,2012.
[16] 毕凤荣,杜宪峰,邵康,等.基于形貌优化的低振动柴油机机体设计[J].内燃机学报,2010 (5): 459-463.
BI Feng-rong, DU Xian-feng, SHAO Kang, et al. Block design of diesel engine for low vibration based on topography optimization [J]. Transactions of CSICE, 2010 (5): 459-463.
[17] 孙晓辉,丁晓红.结构多目标拓扑优化设计[J].机械设计与研究,2012,28(4): 1-4.
SUN Xiao-hui, DING Xiao-hong. Research on multi-objective topology optimization design methods for structure [J]. Machine Design and Research, 2012,28(4): 1-4.
[18] 庞剑,谌刚,何华. 汽车噪声与振动理论与应用[M]. 北京理大学出版社, 2008: 238-268.
[19] 袁毅.基于应力功率谱的结构振动疲劳寿命预测方法研究[D].长沙:湖南大学, 2014.
YUAN Yi.Vibration fatigue life prediction method research based on stress power spectrum [D]. Changsha: Hunan University, 2014.
[20] 王国军. MSC.FATIGUE疲劳分析实例指导教程[M].机械工业出版社,2009: 168-196.
[21] 刘林华,辛勇,汪伟.基于折衷规划的车架结构多目标拓扑优化设计[J].机械科学与技术, 2011, 30(3):382-385.
LIU Lin-hua, XIN Yong, WANG Wei. Multi-objective topology optimization for an off-road vehicle frame based on compromise programming [J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(3): 382-385.

[1] 杨骥, 郝志勇, 葛如炜, 郑康, 郑旭. 发动机冷却模块振动优化[J]. J4, 2012, 46(12): 2194-2200.
[2] 郭磊, 郝志勇, 刘波, 等. 曲轴强度多体动力学与有限元子模型法仿真[J]. J4, 2009, 43(09): 1638-1643.