Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (2): 251-258    DOI: 10.3785/j.issn.1008-973X.2021.02.005
机械工程     
外肢体机器人研究综述
刘德斌1(),王旦1,2,*(),陈柏1,王尧尧1,2,宋立瑶1
1. 南京航空航天大学 直升机传动技术国防科技重点实验室,江苏 南京 210016
2. 浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
A survey of supernumerary robotic limbs
De-bin LIU1(),Dan WANG1,2,*(),Bai CHEN1,Yao-yao WANG1,2,Li-yao SONG1
1. National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1218 KB)   HTML
摘要:

阐述外肢体机器人(SRLs)的研究背景和研究意义. 介绍外肢体机器人的概念,将外肢体机器人按照功能分为辅助操作外肢体与辅助支撑外肢体. 针对不同结构类型与结构柔性的2类外肢体机器人总结研究现状. 就外肢体机器人人机一体化特性带来的结构轻量化、安全性、人机协作、抗干扰能力四方面对外肢体机器人的研究要点进行分析. 对外肢体机器人未来的发展趋势进行总结与展望.

关键词: 外肢体机器人人机协作辅助操作辅助支撑    
Abstract:

Firstly, the research background and the significance of supernumerary robotic limbs (SRLs) were introduced. Secondly, the concept of SRLs was provided, and SRLs were divided into two parts, i.e., auxiliary operation SRLs and auxiliary support SRLs, according to their functions. Thirdly, the current research status and progress for different structure types and structural flexibility SRLs were outlined. Besides, the main research points about man-machine integration for the SRLs were analyzed in terms of lightweight design and security, robotic-human-environment interaction and cooperation and anti-interference capability. Finally, the prospect of the SRLs was summarized.

Key words: supernumerary robotic limbs    robotic-human-environment interaction and cooperation    auxiliary operation    auxiliary support
收稿日期: 2020-05-11 出版日期: 2021-03-09
CLC:  TH 39  
基金资助: 国家自然科学基金资助项目(51705243);流体动力与机电系统国家重点实验室开放基金资助项目(GZKF-201917);江苏省自然科学基金资助项目(BK20170789);南京航空航天大学基本科研业务费-青年科技创新基金资助项目(NT2020010)
通讯作者: 王旦     E-mail: nuaaldb@nuaa.edu.cn;wangdan_053@nuaa.edu.cn
作者简介: 刘德斌(1994—),男,硕士生,从事智能机器人研究. orcid.org/0000-0001-9411-4081. E-mail: nuaaldb@nuaa.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘德斌
王旦
陈柏
王尧尧
宋立瑶

引用本文:

刘德斌,王旦,陈柏,王尧尧,宋立瑶. 外肢体机器人研究综述[J]. 浙江大学学报(工学版), 2021, 55(2): 251-258.

De-bin LIU,Dan WANG,Bai CHEN,Yao-yao WANG,Li-yao SONG. A survey of supernumerary robotic limbs. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 251-258.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.02.005        http://www.zjujournals.com/eng/CN/Y2021/V55/I2/251

图 1  辅助操作外肢体机器人示意图
图 2  辅助支撑外肢体机器人示意图
图 3  面向头顶空间作业的外肢体机器人
图 4  面向舱内钻孔作业的外肢体机器人
图 5  面向舱内布线及装配作业的外肢体机器人
图 6  面向天花板安装作业的外肢体机器人
图 7  外肢体机器人MetaLimbs
图 8  外肢体机器人Naviarm
图 9  基于液压驱动的3自由度外肢体机器人
图 10  安装在肘部的外肢体机器人
图 11  柔性外肢体机器人SPL
图 12  柔性外肢体机器人fSPL
图 13  充气式柔性外肢体机器人
图 14  蛇形外肢体机器人 Orochi
图 15  辅助支撑外肢体机器人
图 16  肌电控制的外肢体机器人
图 17  外肢体机器人MantisBot
图 18  面向日常生活应用的外肢体机器人
1 2018年农民工监测调查报告[J]. 农村工作通讯, 2019(11): 40-43.
2018 migrant workers monitoring survey report [J]. Newsletter About Work in Rural Areas, 2019(11): 40-43.
2 刘亚威. 波音公司放弃使用机器人装配777X飞机机身[N]. 航空简报, 2020-01-17.
3 PENALOZA C I, NISHIO S BMI control of a third arm for multitasking[J]. Science Robotics, 2018, 3 (20): eaat1228
doi: 10.1126/scirobotics.aat1228
4 ABDI E, BURDET E, BOURI M, et al In a demanding task, three-handed manipulation is preferred to two-handed manipulation[J]. Scientific Reports, 2016, 6: 21758
doi: 10.1038/srep21758
5 GUTERSTAM A, PETKOVA V I, EHRSSON H H The illusion of owning a third arm[J]. Plos One, 2011, 6 (2): e17208
doi: 10.1371/journal.pone.0017208
6 DOUGHERTY Z, WINCK R C. Evaluating the performance of foot control of a supernumerary robotic limb [C]// Dynamic Systems and Control Conference. Park City: ASME, 2019: V003T16A003.
7 DOUGHTERY Z J. Foot-controlled supernumerary robotic arm: control methods and human abilities [D]. Terre Haute: Rose-Hulman Institute of Technology, 2018.
8 BASHFORD L, MEHRING C Ownership and agency of an independent supernumerary hand induced by an imitation brain-computer interface[J]. Plos One, 2016, 11 (6): e0156591
doi: 10.1371/journal.pone.0156591
9 ABDI E, BURDET E, BOURI M, et al Control of a supernumerary robotic hand by foot: an experimental study in virtual reality[J]. Plos One, 2015, 10 (7): e0134501
doi: 10.1371/journal.pone.0134501
10 高越. 3D打印技术影响下设计师与产品设计的重新定位[D]. 北京: 北京理工大学, 2015.
GAO Yue. The repositioning of designer and product design under the influence of 3D printing technology [D]. Beijing: Beijing Institute of Technology, 2015.
11 徐蓓芬 协作机器人在车身车间的应用[J]. 汽车实用技术, 2020, (1): 181- 183
XU Bei-fen Application of collaborative robot in body workshop[J]. Automobile Applied Technology, 2020, (1): 181- 183
12 DAVENPORT C, PARIETTI F, ASADA H H. Design and biomechanical analysis of supernumerary robotic limbs [C]// ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference. Fort Lauderdale: ASME, 2012: 787-793.
13 LLORENS-BONILLA B, PARIETTI F, ASADA H H. Demonstration-based control of supernumerary robotic limbs [C]// 25th IEEE\RSJ International Conference on Intelligent Robots and Systems (IROS). Portugal: IEEE, 2012: 3936-3942.
14 杨辰光, 梁培栋, 陈君申, 等. 肩部可穿戴功能辅助机械臂: CN104825258A [P]. 2015-08-12.
15 朱延河, 赵传武, 张宗伟. 一种外肢体机器人模块单元及模块化可重构外肢体机器人: CN109514535A [P]. 2019-03-26.
16 黄剑, 霍军, 张梦诗, 等. 一种人体运动辅助两用式外肢体机器人: CN110292510A [P]. 2019-10-01.
17 丁志远, 蔡易林, 徐浩, 等. 可穿戴式三自由度人体辅助外机械臂: CN110561403A [P]. 2019-12-13.
18 陈恳, 郝鸣, 付成龙, 等. 外肢体负重行走辅助机器人: CN111113381A [P]. 2020-05-08.
19 XU C C, LIU Y Y, LI Z J. Biomechtronic design of a supernumerary robotic limbs for industrial assembly [C]// 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM). Toyonaka: IEEE, 2019: 553-558.
20 LLORENS-BONILLA B, ASADA H H. A robot on the shoulder: coordinated human-wearable robot control using coloured petri nets and partial least squares predictions [C]// IEEE International Conference on Robotics and Automation. Hong Kong: IEEE, 2014: 119-125.
21 PARIETTI F, ASADA H H. Supernumerary robotic limbs for aircraft fuselage assembly: body stabilization and guidance by bracing [C]// IEEE International Conference on Robotics and Automation. Hong Kong: IEEE, 2014: 1176-1183.
22 BRIGHT L. Supernumerary robotic limbs for human augmentation in overhead assembly tasks [C]// Robotics: Science and Systems. Cambridge: Massachusetts Institute of Technology, 2017: 91-95.
23 SEO W, SHIN C Y, CHOI J, et al. Applications of supernumerary robotic limbs to construction works: case studies [C]// Proceedings of the International Symposium on Automation and Robotics in Construction. Auburn: IAARC Publications, 2016, 33: 1, .
24 SHIN C Y. Position holding and force regulation control of supernumerary robotic limbs for ceiling work [D]. Seoul: Korea University, 2015.
25 SASAKI T, SARAIJI M Y, FERNANDO C L, et al. MetaLimbs: metamorphosis for multiple arms interaction using artificial limbs [C]// ACM Siggraph Posters. Los Angeles: ACM, 2017: a55.
26 MAEKAWA A, TAKAHASHI S, SARAIJI M Y, et al. Naviarm: augmenting the learning of motor skills using a backpack-type robotic arm system [C]// Proceedings of the 10th Augmented Human International Conference 2019. Reims: ACM, 2019: 1-8.
27 VERONNEAU C, DENIS J, LEBEL L P, et al Multifunctional remotely actuated 3-DOF supernumerary robotic arm based on magnetorheological clutches and hydrostatic transmission lines[J]. IEEE Robotics and Automation Letters, 2018, 5 (2): 2546- 2553
28 VATSAL V, HOFFMAN G. Design and analysis of a wearable robotic forearm [C]// 2018 IEEE International Conference on Robotics and Automation. Brisbane: IEEE, 2018: 5489-5496.
29 VATSAL V, HOFFMAN G. End-effector stabilization of a wearable robotic arm using time series modeling of human disturbances [C]// ASME 2019 Dynamic Systems and Control Conference. Park City: AMSE, 2019: V001T05A001.
30 VALE N M. User intent detection and control of a soft Poly-Limb [D]. Tempe: Arizona State University, 2018.
31 NGUYEN P H, SPARKS C, NUTHI S G, et al Soft Poly-Limbs: toward a new paradigm of mobile manipulation for daily living tasks[J]. Soft Robotics, 2018, 6 (1): 38- 53
32 NGUYEN P H, MOHD I I B, SPARKS C, et al. Fabric soft poly-limbs for physical assistance of daily living tasks [C]// 2019 International Conference on Robotics and Automation. Montreal: IEEE, 2019: 8429-8435.
33 LIANG X Q, CHEONG H, CHUI C K, et al A fabric-based wearable soft robotic limb[J]. Journal of Mechanisms and Robotics: Transactions of the ASME, 2019, 11 (3): 031003
doi: 10.1115/1.4043024
34 AL-SADA M, HOGLUND T, KHAMIS M, et al. Orochi: investigating requirements and expectations for multipurpose daily used supernumerary robotic limbs [C]// Proceedings of the 10th Augmented Human International Conference 2019. Reims: AH, 2019.
35 WU F Y, ASADA H H. Decoupled motion control of wearable robot for rejecting human induced disturbances [C]// 2018 IEEE International Conference on Robotics and Automation. Brisbane: IEEE, 2018: 4103-4110.
36 PARIETTI F, CHAN K C, HUNTER B, et al. Design and control of supernumerary robotic limbs for balance augmentation [C]// 2015 IEEE International Conference on Robotics and Automation. Seattle: IEEE, 2015: 5010-5017.
37 PARIETTI F, ASADA H H. Independent, voluntary control of extra robotic limbs [C]// 2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017: 5954-5961.
38 KUREK D A, ASADA H H. The MantisBot: design and impedance control of supernumerary robotic limbs for near-ground work [C]// 2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017: 5942-5947.
[1] 关旭东,周瑾,金超武,徐园平. 重载磁悬浮轴承-转子自适应控制性能[J]. 浙江大学学报(工学版), 2020, 54(4): 662-670.
[2] 田昊,赵禹任. 高速电磁阀开启特性的光学测量[J]. 浙江大学学报(工学版), 2020, 54(1): 17-22.
[3] 陈海森, 张德新, 王继河, 邵晓巍, 陈国忠. 基于H∞-交叉耦合算法的双驱同步控制[J]. 浙江大学学报(工学版), 2017, 51(1): 131-137.
[4] 胡健, 吴功平,王伟, 杨守东,刘明, 杨智勇, 何缘, 郭磊.
巡线机器人无动力下坡速度控制方法
[J]. 浙江大学学报(工学版), 2015, 49(10): 1878-1884.
[5] 朱成党, 涂乐, 林勇刚, 刘宏伟, 李伟. 风电机组的机械液压混合传动技术[J]. 浙江大学学报(工学版), 2014, 48(10): 1767-1774.