Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (12): 2437-2444    DOI: 10.3785/j.issn.1008-973X.2019.12.023
环境工程     
不同化学氧化剂对土壤中多环芳烃的降解效果
陈倩1(),蔡武1,陈杰2,赵虎彪1,李昌鑫1,何云峰1,*()
1. 浙江大学 环境与资源学院,浙江 杭州 310058
2. 杭州博盛环保科技有限公司,浙江 杭州 310014
Degradation effects of different chemical oxidants on polycyclic aromatic hydrocarbons in soil
Qian CHEN1(),Wu CAI1,Jie CHEN2,Hu-biao ZHAO1,Chang-xin LI1,Yun-feng HE1,*()
1. College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
2. Hangzhou Bo Sheng Environmental Science and Technology Co. Ltd, Hangzhou 310014, China
 全文: PDF(798 KB)   HTML
摘要:

选取被多环芳烃(PAHs)污染的土壤作为试验样本,应用4种化学氧化剂降解土壤中16种多环芳烃,对比不同氧化剂的降解效果,筛选最佳氧化剂并优化氧化条件. 结果表明:采用双氧水、改性Fenton试剂、高锰酸钾、活化过硫酸钠均可以降解土壤中的多环芳烃,其降解效率依次为:高锰酸钾(94.06%)>活化过硫酸钠(82.79%)>改性Fenton(81.15%)>双氧水(72.91%). 高锰酸钾能高效、稳定地降解16种多环芳烃,对单个多环芳烃的降解率均在80%以上,土壤中多环芳烃的残留量均在标准范围内. 当添加量为2.5 mol/kg、水土比为7.5、反应时间为48 h时,高锰酸钾降解多环芳烃的效率最高,达到95.96%. 化学氧化剂可以有效降解土壤中的多环芳烃,高锰酸钾的降解效果最好,具有较好的应用前景.

关键词: 多环芳烃(PAHs)化学氧化降解效果高锰酸钾    
Abstract:

The soil polluted by polycyclic aromatic hydrocarbons (PAHs) was taken as test samples, and four types of chemical oxidants were applied to remove 16 PAHs from the soil. Their degradation effects were compared to select the most effective oxidant to remove 16 PAHs, and then optimize the oxidation conditions for this oxidant. Based on the results, potassium permanganate, activated sodium persulfate, modified Fenton, and hydrogen peroxide proved to be effective for degrading PAHs, and the degradation rate was 94.06%, 82.79%, 81.15% and 72.91%, respectively. Specifically, potassium permanganate showed remarkable improvement in degradation efficiency compared with other oxidants. The degradation rate of potassium permanganate for each PAH was more than 80%, and the residual PAHs contents in soil were below the standard limit values. What’s more, the best remediation performance of potassium permanganate achieved 95.96% with oxidant dosage of 2.5 mols per 1 kg soil, liquid/solid ratio of 7.5, and the contact time of 48 h. The chemical oxidants are availible to degrade PAHs efficiently from contaminated soil, and potassium permanganate appears to have great prospects of application to degrade PAHs for its best performance on PAHs degradation.

Key words: PAHs    chemical oxidation    degradation effects    potassium permanganate
收稿日期: 2018-10-30 出版日期: 2019-12-17
CLC:  X 53  
基金资助: 国家自然科学基金资助项目(51675473);国家创新群体资助项目(51521064);高校基本科研专项资金资助项目(2018XZZX001-04)
通讯作者: 何云峰     E-mail: 21614045@zju.edu.cn;yfhe@zju.edu.cn
作者简介: 陈倩(1993—),女,硕士生,从事土壤污染修复研究. orcid.org/0000-0001-8845-352X. E-mail: 21614045@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陈倩
蔡武
陈杰
赵虎彪
李昌鑫
何云峰

引用本文:

陈倩,蔡武,陈杰,赵虎彪,李昌鑫,何云峰. 不同化学氧化剂对土壤中多环芳烃的降解效果[J]. 浙江大学学报(工学版), 2019, 53(12): 2437-2444.

Qian CHEN,Wu CAI,Jie CHEN,Hu-biao ZHAO,Chang-xin LI,Yun-feng HE. Degradation effects of different chemical oxidants on polycyclic aromatic hydrocarbons in soil. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2437-2444.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.12.023        http://www.zjujournals.com/eng/CN/Y2019/V53/I12/2437

PAHs wB /10?6 PAHs wB /10?6
萘Na 15.63±3.05 苯并[a]蒽BaA 2.58±0.92
苊烯Acy 2.99±0.31 屈Chry 3.84±1.58
苊Ac 2.05±0.12 苯并[b]荧蒽BbF 6.19±1.10
芴Fl 0.89±0.78 苯并[k]荧蒽BkF 2.93±0.14
菲Phen 1.97±0.26 苯并[a]芘BaP 2.87±0.53
蒽An 1.17±0.32 茚并[1,2,3-cd]芘IN 8.95±1.60
荧蒽Flur 3.85±0.93 二苯并[a,h]蒽DA 2.47±1.07
芘Py 1.81±0.95 苯并[g,h,i]芘BP 6.29±1.32
表 1  原始土样中16种多环芳烃的质量分数
氧化剂 试剂 X/(mol·kg?1) V/mL
H2O2 H2O2 2.0 24.0
3.0 23.5
4.0 23.0
5.0 22.5
MF H2O2
FeSO4
柠檬酸
2.0 21.0
3.0 19.0
4.0 17.0
5.0 15.0
Activated Na2S2O Na2S2O8
FeSO4
柠檬酸
2.0 17.0
3.0 13.0
4.0 9.0
5.0 5.0
KMnO4 KMnO4 0.5 18.75
1.0 12.5
1.5 6.25
2.0 0
表 2  实验氧化剂和添加量设置
图 1  不同氧化剂对PAHs的降解效率
图 2  4种氧化剂对16种多环芳烃的最佳降解效率对比
土壤来源 wB /10?6 氧化剂 X/(mol·kg?1 Ψ/% R t/h 实验方法
钢铁厂 66.47 双氧水 4.0 72.91 5 24 本实验
改性Fenton 5.0 81.15
活化过硫酸钠 5.0 82.79
高锰酸钾 2.0 94.06
沉积物
(煤焦油废水污染)
2 816 双氧水 3.3 96 10/3 至反应结束 文献[8]
改性Fenton 1.7 98
活化过硫酸钠 1.7 88
高锰酸钾 3.3 96
焦化厂 189.0 双氧水 2.0 53 5 24 文献[11]
类Fenton 2.0 80
活化过硫酸钠 4.0 92
高锰酸钾 1.5、2.0 96
工业港口底泥 4.226 改性Fendon 1.25 68.3 25 24 文献[12]
高锰酸钾 26.9 72.8
表 3  不同条件下不同氧化剂对16种多环芳烃的降解效果对比
图 3  4种氧化剂添加量固定、水土比不同条件下高锰酸钾对16种 PAHs的降解效率对比
图 4  不同接触时间下高锰酸钾对16种PAHs的降解效率
参数 R X t
注:*表示在 0.05 层上显著(双尾),**表示在 0.01 层上显著(双尾)
Ψ的相关系数 ?0.033 0.463* 0.630**
Ψ的显著性(双尾) 0.875 0.029 0.004
表 4  高锰酸钾的降解条件与降解效率的相关性分析
1 金赞芳, 陈英旭 环境的PAHs污染及其生物修复技术研究进展[J]. 农业环境保护, 2001, 20 (2): 123- 125
JIN Zan-fang, CHEN Ying-xu Pollution of polycyclic aromatic hydrocarbons (PAHs) in environment and its bioremediation[J]. Journal of Agro-environmental Science, 2001, 20 (2): 123- 125
2 BANSAL V, KIM K H Review of PAH concentration in food products and their health hazards[J]. Environment International, 2015, 84: 26- 38
doi: 10.1016/j.envint.2015.06.016
3 LEMAIRE J, BUèS M, KABECHE T, et al Oxidant selection to treat an aged PAH contaminated soil by in situ chemical oxidation[J]. Journal of Environmental Chemical Engineering, 2013, 1 (4): 1261- 1268
doi: 10.1016/j.jece.2013.09.018
4 United States Environmental Agency. Evaluation and estimation of potential carcinogenic risks of polynuclear aromatic hydrocarbons (PAH) [EB/OL]. (2002-05-24)[2018-10-30]. https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NCEA&TIMSType=&count=10000&dirEntryId=37956&searchAll=&showCriteria=2&simpleSearch=0&startIndex=60001.
5 PELUFFO M, ROSSO J A, MORELLI I S, et al Strategies for oxidation of PAHs in aged contaminated soil by batch reactors[J]. Ecotoxicology and Environmental Safety, 2018, 151: 76- 82
doi: 10.1016/j.ecoenv.2017.12.067
6 环境保护部, 国土资源部. 全国土壤污染状况调查公报 [EB/OL]. (2014-04-17)[2018-10-30]. http://www.ndrc.gov.cn/fzgggz/ncjj/zhdt/201404/t20140418_607888.html.
7 RANC B, FAURE P, CROZE V, et al Selection of oxidation doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs): a review[J]. Journal of Hazardous Materials, 2016, 312: 280- 297
doi: 10.1016/j.jhazmat.2016.03.068
8 FERRARESE E, ANDREOTTOLA G, OPREA I A Remediation of PAH-contaminated sediments by chemical oxidation[J]. Journal of Hazardous Materials, 2008, 152 (1): 128- 139
doi: 10.1016/j.jhazmat.2007.06.080
9 ZHAO D, LIAO X, YAN X, et al Effect and mechanism of persulfate activated by different methods for PAHs removal in soil[J]. Journal of Hazardous Materials, 2013, 254-255: 228- 235
doi: 10.1016/j.jhazmat.2013.03.056
10 孙剑英, 刘五星, 骆永明, 等 气相色谱–质谱法测定含油污泥污染土壤中的多环芳烃[J]. 土壤, 2013, 01: 111- 115
SUN Jian-ying, LIU Wu-xing, LUO Yong-ming, et al Determination of PAHs in oily sludge-contaminated soil by gas chromatograph-mass spectrometry[J]. Soils, 2013, 01: 111- 115
doi: 10.3969/j.issn.0253-9829.2013.01.017
11 赵丹, 廖晓勇, 阎秀兰, 等 不同化学氧化剂对焦化污染场地多环芳烃的修复效果[J]. 环境科学, 2011, 32 (3): 857- 863
ZHAO Dan, LIAO Xiao-yong, YAN Xiu-lan, et al Chemical oxidants for remediation of soils contaminated with polycyclic aromatic hydrocarbons at a coking site[J]. Environmental Science, 2011, 32 (3): 857- 863
12 CHEN C W, BINH N T, HUNG C M, et al Removal of polycyclic aromatic hydrocarbons from sediments using chemical oxidation processes[J]. Journal of Advanced Oxidation Technologies, 2015, 18 (1): 15- 22
13 LIANG C, BRUELL C J, MARLEY M C, et al Persulfate oxidation for in situ remediation of TCE. Ⅱ. activated by chelated ferrous ion[J]. Chemosphere, 2004, 55 (9): 1225- 1233
doi: 10.1016/j.chemosphere.2004.01.030
14 WATTS R J, STANTON P C, HOWSAWKENG J, et al Mineralization of a sorbed polycyclic aromatic hydrocarbon in two soils using catalyzed hydrogen peroxide[J]. Water Research, 2002, 36 (17): 4283- 4292
doi: 10.1016/S0043-1354(02)00142-2
15 邸莎, 张超艳, 颜增光, 等 过硫酸钠对我国典型土壤中多环芳烃氧化降解效果的影响[J]. 环境科学研究, 2018, 31 (1): 95- 101
DI Sha, ZHANG Chao-yan, YAN Zeng-guang, et al Oxidative degradation effect of sodium persulfate on polycyclic aromatic hydrocarbons in typical Chinese soils[J]. Research of Environmental Sciences, 2018, 31 (1): 95- 101
16 吉飞, 李朝林, 邓磊, 等 CuO/过硫酸氢钾体系催化氧化苯酚[J]. 环境工程学报, 2014, 8 (1): 27- 31
JI Fei, LI Chao-lin, DENG Lei, et al Catalytic oxidation of phenol by CuO/peroxymonosulfate system[J]. Chinese Journal of Environmental Engineering, 2014, 8 (1): 27- 31
17 GRYZENIA J, CASSIDY D, HAMPTON D Production and accumulation of surfactants during the chemical oxidation of PAH in soil[J]. Chemosphere, 2009, 77 (4): 540- 545
doi: 10.1016/j.chemosphere.2009.07.012
18 JONSSON S, PERSSON Y, FRANKKI S, et al Degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils by Fenton's reagent: a multivariate evaluation of the importance of soil characteristics and PAH properties[J]. Journal of Hazardous Materials, 2007, 149 (1): 86- 96
doi: 10.1016/j.jhazmat.2007.03.057
19 BROWN G S, BARTON L L, NETO B B, et al Permanganate oxidation of sorbed polycyclic aromatic hydrocarbons[J]. Waste Management, 2003, 23 (8): 737- 740
doi: 10.1016/S0956-053X(02)00119-8
20 KANEL S R, NEPPOLIAN B, JUNG H, et al Comparative removal of polycyclic aromatic hydrocarbons using iron oxide and hydrogen peroxide in soil slurries[J]. Environmental Engineering Science, 2004, 21 (6): 741- 751
doi: 10.1089/ees.2004.21.741
21 LIAO X, ZHAO D, YAN X, et al Identification of persulfate oxidation products of polycyclic aromatic hydrocarbon during remediation of contaminated soil[J]. Journal of Hazardous Materials, 2014, 276: 26- 34
doi: 10.1016/j.jhazmat.2014.05.018
22 任兴飞. 化学氧化修复土壤PAHs过程中污染物的环境行为[D]. 天津大学, 2015.
REN Xing-fei. The environmental behaviors of pollutants in the process of chemical oxidation to remediate PAHs contaminated soils[D]. Tianjin University, 2015.
[1] 唐凯, 贾佳, 邓靖, 宋亚丽, 李青松. 超声及高锰酸钾-超声协同降解水中17β-雌二醇的影响因素分析[J]. 浙江大学学报(工学版), 2014, 48(6): 1132-1140.
[2] 丁晶,舒欣,赵庆良. 电化学氧化法处理氨氮废水的影响因素[J]. J4, 2013, 47(5): 889-894.
[3] 王晓卉,俞亭超,李聪,叶苗苗. 高锰酸钾改性活性炭对水中Sb(Ⅲ)的吸附[J]. J4, 2012, 46(11): 2028-2034.
[4] 马琳,肖玉凤,赵杰,陈卫祥. 中空Pd/C催化剂的合成及其对甲酸氧化电催化性能[J]. J4, 2011, 45(5): 923-927.
[5] 肖玉风, 黄思玉, 陈卫祥. 电催化剂及其对甲酸氧化的电催化性能[J]. J4, 2009, 43(7): 1327-1331.
[6] 赵杰, 黄思玉, 陈卫祥. PtRu/C和PtNi/C催化剂合成及其对甲醇氧化的电催化性能[J]. J4, 2009, 43(5): 962-967.
[7] 黄思玉 赵杰 陈卫祥 徐铸德. 空心PtCo/CNTs催化剂的合成及其电催化性能[J]. J4, 2008, 42(7): 1218-1222.
[8] 叶群峰 王成云 徐新华 汪大翚. 锰酸钾吸收气态汞的传质-反应研究[J]. J4, 2007, 41(5): 831-835+870.
[9] 韩小斐 陈卫祥 赵杰 聂秋林. 微波合成PtRu/CNTs催化剂及其电催化性能[J]. J4, 2005, 39(12): 1871-1874.