Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (4): 732-742    DOI: 10.3785/j.issn.1008-973X.2019.04.014
土木工程、海洋工程     
冷弯薄壁型钢墙体-楼板节点抗震性能试验研究
褚云朋1,2(),王秀丽1,姚勇2
1. 兰州理工大学 土木工程学院,甘肃 兰州 730050
2. 西南科技大学 土木工程与建筑学院,四川 绵阳 621010
Experimental research on seismic behavior of thin cold-formed steel wall–floor connections
Yun-peng CHU1,2(),Xiu-li WANG1,Yong YAO2
1. College of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2. College of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, China
 全文: PDF(1683 KB)   HTML
摘要:

开展考虑不同构造、轴压比、墙架柱截面类型及覆板蒙皮作用的7个试件的抗震试验,可得如下结论. 1)覆板后节点破坏由墙-楼板连接处的自攻螺钉失效导致,防止该区域的自攻螺钉失效是连接成败的关键. 2)覆板后规程推荐节点承载力、耗能能力明显提高,但受截面高度、轴压比的影响均较大. 3)覆板后角钢加强型节点承载力及耗能能力均降低,且受截面高度的影响大;2 mm 厚角钢试件在加载初期发生两肢间夹角的拉大与减小,破坏时螺钉全部从墙架柱拉脱;4 mm 厚角钢试件楼层梁与角钢间的自攻螺钉过早发生失效,造成角钢厚度增加,承载力降低. 4)获得节点的恢复力骨架曲线特征值,为结构基于简化力学模型抗震计算提供基础数据.

关键词: 冷弯型钢薄壁组合墙体-楼板连接节点抗震性能对比分析破坏模式    
Abstract:

A total of 7 samples were designed to examine the effects of different tectonic modes, axial compression ratio, cross section of the frame column and stressed-skin effect on the seismic performance. Results showed as follows. 1) The joint’s failure after skinned is caused by the failure of the self-tapping screws at the wall-floor joint, so preventing the failure of self-tapping screws in the connection is key to success. 2) The bearing capacity and energy dissipation capacity of the recommended joints after covering plate are obviously improved. But the bearing capacity and the energy dissipation capacity are greatly influenced by the height of the section and the ratio of axial pressure. 3) The bearing capacity and energy dissipation capacity of the strengthened joint of angle steel are reduced after skinned, and are greatly effected by the height of cross section. The angle of 2 mm thick specimen is enlarged and reduced in the initial loading. Until all screws are removed from the wall frame and connection completely loses its bearing capacity. Premature failure of self-tapping screws between floor beam and 4 mm thick angle steel specimen causes the bearing capacity to decrease when the thickness increases. 4) The joint’s skeleton curve model is obtained, and the basic data is provided for the structural calculation based on simplified mechanical model seismic performance.

Key words: connection of cold-formed steel combined floor    seismic behavior    comparative analysis    failure mode
收稿日期: 2018-03-06 出版日期: 2019-03-28
CLC:  TU 318  
作者简介: 褚云朋(1979—),副教授,博士生,从事钢结构抗震的研究. E-mail: chuyunpeng@swust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
褚云朋
王秀丽
姚勇

引用本文:

褚云朋,王秀丽,姚勇. 冷弯薄壁型钢墙体-楼板节点抗震性能试验研究[J]. 浙江大学学报(工学版), 2019, 53(4): 732-742.

Yun-peng CHU,Xiu-li WANG,Yong YAO. Experimental research on seismic behavior of thin cold-formed steel wall–floor connections. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 732-742.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.04.014        http://www.zjujournals.com/eng/CN/Y2019/V53/I4/732

序号 组别 试件编号 连接方式 墙架柱截面 竖向力/kN 轴压比 附注
1 CS-89-0.2-B 规程推荐 C89×44.5×12×1 32.7 0.2 面板采用水平拼缝,且拼接处尽可能远离楼层连接处;墙架柱楼层梁板件厚度为1 mm;墙面OSB板厚度为9 mm;楼面OSB板厚度为15 mm
3 CS-160-0.2-B 规程推荐 C160×40×10×1 17.8 0.2
5 CS-160-0.4-B 规程推荐 C160×40×10×1 35.6 0.4
7 CS-89-0.4-B 规程推荐 C89×44.5×12×1 32.7 0.2
9 NCS-160-0.2-B 角钢加强型 C160×40×10×1 17.8 0.2 角钢厚度为2 mm
11 NCS-89-0.4-B 角钢加强型 C89×44.5×12×1 65.4 0.4 角钢厚度为2 mm
13 NCS-80-0.4-BG 角钢加强型 □80×40×1 91.6 0.4 角钢厚度为4 mm
表 1  试件编号及组成
图 1  龙骨及覆板后连接构造
荷载级别 位移幅值/mm 循环次数 荷载级别 位移幅值/mm 循环次数
1 ±4.5 3 2 ±9 3
3 ±18 3 4 ±27 2
5 ±36 2 6 ±45 2
7 ±54 2 8 ±63 2
9 ±72 2 10 ±81 2
11 ±90 2 12 ±108 2
13 ±126 2 14 ±144 2
15 ±162 2 16 ±180 2
17 ±207 2 17 ±216 2
表 2  墙-楼板试验加载制度
图 2  墙-楼板试验装置示意及现场布置
图 4  应变片布置
图 3  位移计布置
图 5  CS系列试件破坏特征
图 6  NCS系列试件破坏特征
图 7  梁悬臂端荷载-位移曲线
图 8  节点骨架曲线
序号 试件编号 Py/kN Δy/mm Pmax/kN Δmax/mm Pu/kN Δu/mm μ E
1 CS-89-0.2-B 3.19 121 3.44(21.1%) 206 3.44 206 1.70 4 113
2 CS-89-0.2 2.52 63 2.84 108 2.42 181 2.87 3 575
3 CS-160-0.2-B 5.33 113 5.77(31.7%) 169 5.42 201 1.79 6 517
4 CS-160-0.2 3.58 44 4.38 85.5 3.73 148 3.32 3 899
5 CS-160-0.4-B 4.18 61 4.73(54.1%) 85 3.82 105 1.71 3 928
6 CS-160-0.4 2.60 108 2.58 135 2.61 178 3.32 3 899
7 CS-89-0.4-B 3.16 58 3.37(30.6%) 90 3.27 90 1.55 4 017
8 CS-89-0.4 2.69 83 3.24 117 2.76 150 1.81 4 071
9 NCS-160-0.2-B 2.50 108 2.95(?5.5%) 67 2.50 80 1.36 4 070
10 NCS-160-0.2-1 2.61 74 3.12 101 2.65 192 2.59 4 297
11 NCS-89-0.4-B 1.95 60 2.01(?26.9%) 63 1.71 101 1.68 3 250
12 NCS-89-0.4-2 2.24 121 2.75 207 2.75 207 1.21 3 773
13 NCS-80-0.4-BG 1.85 78 2.04(?57.4%) 71 1.73 110 1.41 2 128
14 NCS-80-0.4-2 4.25 70 4.79 135 4.07 202 2.89 5 852
表 3  试件荷载、位移特征值汇总
图 9  刚度退化曲线
图 10  承载力退化曲线
1 JGJ227-2011, 低层冷弯薄壁型钢房屋建筑技术规程[S]. 北京: 中国建筑工业出版社, 2011.
2 YOUNG B, CHEN J Design of cold-formed steel built-up closed sections with intermediate stiffeners[J]. Journal of Structures Engineering, 2008, 134 (5): 727- 737
doi: 10.1061/(ASCE)0733-9445(2008)134:5(727)
3 史艳莉, 王文达, 靳垚 考虑墙体作用的低层冷弯薄壁型钢轻型房屋住宅体系弹塑性动力分析[J]. 工程力学, 2012, 29 (12): 186- 195
SHI Yan-li, WANG Wen-da, JIN Yao Elastic-plastic dynamic analysis of cold-formed thin-walled steel framing system of low-rice residential buildings with composite wall[J]. Engineering Mechanics, 2012, 29 (12): 186- 195
doi: 10.6052/j.issn.1000-4750.2011.05.0261
4 王秀丽, 褚云朋, 姚勇, 等 超薄壁冷弯型钢C型墙架柱-楼层梁连接抗震性能试验研究[J]. 土木工程学报, 2015, 48 (7): 51- 59
WANG Xiu-li, CHU Yun-peng, YAO Yong, et al Experimental research on seismic behavior of cold-formed C section wall frame-floor beam[J]. China Civil Engineering Journal, 2015, 48 (7): 51- 59
5 褚云朋, 姚勇 超薄壁冷弯型钢矩形截面墙架柱-楼层梁连接抗震性能试验研究[J]. 建筑结构学报, 2016, 37 (7): 46- 53
CHU Yun-peng, YAO Yong Experimental study on seismic performance of rectangular wall stud ultra cold-formed steel stud wall-floor joist connection[J]. Journal of Building Structures, 2016, 37 (7): 46- 53
6 沈祖炎, 刘飞, 李元齐 高强超薄壁冷弯型钢低层住宅抗震设计方法[J]. 建筑结构学报, 2013, 34 (1): 44- 51
SHEN Zu-yan, LIU Fei, LI Yuan-qi Seismic design method of low-rise high-strength cold-formed thin-walled steel framing buildings[J]. Journal of Building Structures, 2013, 34 (1): 44- 51
7 褚云朋, 姚勇, 罗能, 等. 多层房屋冷弯薄壁型钢梁柱结构体系, ZL201210564012.8 [P]. 2015-01-07.
CHU Yun-peng, YAO Yong, LUO Neng, et al. Thin walled steel structure beam column system of multi buildings, ZL201210564012.8 [P]. 2015-01-07.
8 GB/T 228.1-2010, 金属材料拉伸试验[S]. 北京: 中国标准出版社, 2010.
9 石宇, 周绪红, 苑小丽, 等 冷弯薄壁卷边槽钢轴心受压构件承载力计算的折减强度法[J]. 建筑结构学报, 2010, 31 (9): 78- 86
SHI Yu, ZHOU Xu-hong, YUAN Xiao-li, et al Strength-reduction method for load-carrying capacity of cold-formed lipped channel columns under axial compression[J]. Journal of Building Structures, 2010, 31 (9): 78- 86
[1] 邱文亮,胡哈斯,田甜,张哲. 影响钢管混凝土组合桥墩抗震性能的结构参数[J]. 浙江大学学报(工学版), 2019, 53(5): 889-898.
[2] 徐强, 郑山锁, 李晓昇. 考虑近海环境劣化作用的钢框架节点抗震性能试验研究[J]. 浙江大学学报(工学版), 2018, 52(12): 2314-2321.
[3] 尹世平, 李耀, 杨扬, 叶桃. 纤维编织网增强混凝土加固RC柱抗震性能的影响因素[J]. 浙江大学学报(工学版), 2017, 51(5): 904-913.
[4] 韩冬, 布欣, 王新武, 蒋沧如. 空间剖分T型钢梁柱连接角柱节点抗震试验[J]. 浙江大学学报(工学版), 2017, 51(2): 287-296.
[5] 李英民, 杨龙, 刘烁宇, 罗文文. 基于可恢复指标的结构损伤机制评价方法[J]. 浙江大学学报(工学版), 2017, 51(11): 2197-2206.
[6] 余志武, 彭晓丹, 国巍, 彭妙培. 装配式剪力墙U型套箍连接节点抗震性能[J]. 浙江大学学报(工学版), 2015, 49(5): 975-984.
[7] 王琼,邓华. 罕遇地震下弦支穹顶的弹塑性动力响应分析[J]. J4, 2013, 47(11): 1889-1895.
[8] 欧阳雯欣, 王清远, 石宵爽, 谭莲飞, 彭泽维. PBL剪力连接件的疲劳试验与分析[J]. J4, 2012, 46(6): 1090-1096.
[9] 李玉荣 沈金 裘涛 孙炳楠 秦从律. 型钢混凝土梁式转换节点抗震性能研究[J]. J4, 2006, 40(1): 96-102.
[10] 秦从律 张爱晖. 基于截面纤维模型的弹塑性时程分析方法[J]. J4, 2005, 39(7): 1003-1008.