Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (2): 388-398    DOI: 10.3785/j.issn.1008-973X.2019.02.023
电气工程     
低开关频率选择谐波消除调制的母线波动补偿
赵硕丰(),黄晓艳*(),方攸同
浙江大学 电气工程学院,浙江 杭州 310027
DC-link voltage fluctuation compensation for selected harmonics elimination under low switching frequency
Shuo-feng ZHAO(),Xiao-yan HUANG*(),You-tong FANG
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1873 KB)   HTML
摘要:

提出基于选择谐波消除脉宽调制(SHEPWM)的补偿策略,用于抑制由直流母线电压波动引起的列车牵引电机电流与转矩波动. 根据每一基波周期内的调制脉冲数确定同步处理区间,使用重复预测器对下一处理区间内的直流母线电压波形进行预测. 根据预测的母线电压波形与开关时刻估计下一处理区间内的磁链误差,并相应地调整开关时刻以消除磁链误差. 在18 kW永磁体内置式永磁同步电动机(IPMSM)上分别对采用完整的补偿策略、采用近似的处理区间内平均母线电压补偿策略与不采用任何补偿策略的情况进行实验. 结果表明提出的补偿策略能显著降低由直流母线电压波动所引起的低次电流谐波和电机转矩波动,且相比近似的处理区间内平均母线电压补偿策略具有更好的电流与转矩波动抑制效果.

关键词: 列车牵引直流母线电压波动选择谐波消除脉宽调制(SHEPWM)重复预测器永磁同步电机(PMSM)    
Abstract:

A novel compensation strategy for selected harmonics elimination pulse width modulation (SHEPWM) was proposed to suppress the current and torque ripple of railway traction motor caused by DC-link voltage fluctuation. Synchronous processing sections were decided according to the number of pulse per fundamental cycle of the modulation. A repetitive predictor was employed to predict the DC-link voltage pattern in the next section. Flux error of the next section was then estimated and the switching instants in the section were accordingly adjusted to compensate the flux error. Experiments were run on an 18 kW traction interior-mounted permanent magnet synchronous motor (IPMSM) with the proposed compensation strategy, with the average DC-link voltage compensation and without any compensation. Results showed that the proposed strategy can significantly eliminate the low-order harmonic current components and motor torque ripple caused by the DC-link voltage fluctuation, and was more effective than average DC-link voltage compensation.

Key words: railway traction    DC-link voltage fluctuation    selected harmonics elimination pulse width modulation (SHEPWM)    repetitive predictor    permanent magnet synchronous motor (PMSM)
收稿日期: 2018-01-17 出版日期: 2019-02-21
CLC:  TH 133  
通讯作者: 黄晓艳     E-mail: 3090101746@zju.edu.cn;huangxiaoyan@zju.edu.cn
作者简介: 赵硕丰(1990—),男,博士生,从事永磁牵引电机驱动控制研究. orcid.org/0000-0002-0802-1979. E-mail: 3090101746@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
赵硕丰
黄晓艳
方攸同

引用本文:

赵硕丰,黄晓艳,方攸同. 低开关频率选择谐波消除调制的母线波动补偿[J]. 浙江大学学报(工学版), 2019, 53(2): 388-398.

Shuo-feng ZHAO,Xiao-yan HUANG,You-tong FANG. DC-link voltage fluctuation compensation for selected harmonics elimination under low switching frequency. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 388-398.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.02.023        http://www.zjujournals.com/eng/CN/Y2019/V53/I2/388

图 1  列车牵引传动系统交-直-交主拓扑
图 2  直流母线电压波动影响下电机相电流仿真波形
图 3  直流母线电压波动影响下电机电磁转矩仿真波形
图 4  牵引控制系统总体结构
图 5  不同SHEPWM模式下处理区间的划分以及典型定子磁链轨迹示意图
图 6  滑动预测窗口原理
图 7  直流母线电压实际值、前端预测值与当前时刻预测值仿真波形
图 8  定子磁链误差计算
图 9  定子磁链误差补偿
图 11  嵌入式控制系统硬件及软件结构
项目 符号/单位 数值
额定功率 Pn/kW 18
额定转速 Nn/(r·min?1) 3 000
额定转矩 Tn/(N·m) 57
效率 η/% 98
额定线电压 Vn-l/V 350
相数 M 3
极对数 P 3
定子相电阻 Rs 0.028
直轴电感 Ld/H 0.001
交轴电感 Lq/H 0.002 5
表 1  实验电机参数
图 10  控制器设置及实验平台
图 13  加入所提出补偿时不同SHEPWM模式下的直流母线电压、电机线电压与电机相电流实验结果
图 12  未加入补偿时不同SHEPWM模式下的直流母线电压、电机线电压与电机相电流实验结果
图 14  使用直接平均法补偿时不同SHEPWM模式下的直流母线电压、电机线电压与电机相电流实验结果
图 15  振动测量仪
补偿使用情况 SHEPWM模式 vv/(mm?s?1 av/(mm?s?2
无补偿 7APQ 13.7 29.2
无补偿 5APQ 13.9 27.5
无补偿 3APQ 13.2 25.8
无补偿 1APQ 16.9 51.5
直接平均法 7APQ 11.1 19.5
直接平均法 5APQ 11.3 19.9
直接平均法 3APQ 12.7 21.7
直接平均法 1APQ 15.1 32.9
本研究提出的方法 7APQ 5.9 10.7
本研究提出的方法 5APQ 8.7 15.7
本研究提出的方法 3APQ 7.4 14.6
本研究提出的方法 1APQ 7.6 13.2
表 2  无补偿、采用直接平均补偿与采用所提出补偿策略时的振动测量值
1 李勇. CRH1型动车组牵引传动系统仿真研究[D]. 成都:西南交通大学, 2012: 9.
LI Yong. CRH1 Type EMU traction drive system simulation research [D]. Chengdu: Southwest Jiaotong University, 2012: 9.
2 宋雷鸣. 动车组传动与控制[M]. 北京: 中国铁道出版社, 2009.
3 魏振兴. CRH2型动车组传动控制系统仿真[D]. 成都: 西南交通大学, 2012: 15.
WEI Zhen-xing. The simulation of CRH2 type EMU transmission control system [D]. Chengdu: Southwest Jiaotong University, 2012: 15.
4 熊盛艳. CRH5型动车组牵引变流器的研究[D]. 成都: 西南交通大学, 2013: 4.
XIONG Sheng-yan. The study of the traction converter in electrical multiple units of CRH5. Chengdu: Southwest Jiaotong University, 2013: 4.
5 邹档兵 CRH系列动车组牵引变流器主电路分析[J]. 铁道机车车辆, 2017, 37 (2): 42- 46
ZOU Dang-bing Traction converter power circuits analysis of CRHx[J]. Railway Locomotive & Car, 2017, 37 (2): 42- 46
doi: 10.3969/j.issn.1008-7842.2017.02.09
6 AKAGI H, KANAZAWA Y, NABAE A Instantaneous reactive power compensators comprising switching devices without energy storage components[J]. IEEE Transactions on Industry Applications, 1984, 20 (3): 625- 630
7 孙大南. 地铁车辆牵引电传动系统控制关键技术研究[D]. 北京: 北京交通大学, 2012: 4–54.
SUN Da-nan. Research on key control technologies of electric traction drive system for metro cars [D]. Beijing: Beijing Jiaotong University, 2012: 4–54.
8 KIM J, JEONG I, LEE K, et al Fluctuating current control method for a PMSM along constant torque contours[J]. IEEE Transactions on Power Electronics, 2014, 29 (11): 6064- 6073
doi: 10.1109/TPEL.2014.2299548
9 SALAM Z, GOODMAN C. Compensation of fluctuating DC link voltage for traction inverter drive [C]// Sixth International Conference on Power Electronics and Variable Speed Drives. Nottingham: IET, 1996: 390–395.
10 HADJI S, TOUHAMI O, GOODMAN C Vector -optimised harmonic elimination for single-phase pulse-width modulation inverters/converters[J]. IET Electric Power Applications, 2007, 1 (3): 423- 432
doi: 10.1049/iet-epa:20060213
11 CHEN Y M, HSIEH C H, CHENG Y M. Modified SPWM control schemes for three-phase inverters [C] // 4th IEEE International Conference on Power Electronics and Drive Systems. Denpaser: IEEE, 2001: 651–656.
12 FUNABIKI S, SAWADA Y. A computative decision of pulse width in three-phase PWM inverter [C]// 1988 IEEE Industry Applications Society Annual Meeting. Pittsburgh: IEEE, 1988: 694–699.
13 ENJETI P, SHIREEN W A new technique to reject DC-link voltage ripple for inverters operating on programmed PWM waveforms[J]. IEEE Transactions on Power Electronics, 1992, 7 (1): 171- 180
doi: 10.1109/63.124589
14 GOU B, FENG X, SONG W, et al. Analysis and compensation of beat phenomenon for railway traction drive system fed with fluctuating DC-link voltage [C]// 7th International Power Electronics and Motion Control Conference. Harbin: IEEE, 2012: 654–659.
15 董侃. 动车组牵引逆变控制关键技术与系统性能优化研究[D]. 北京:北京交通大学, 2015, 17–43.
DONG Kan. Research on key control technologies and performance optimization of traction drive system for EMUs [D]. Beijing: Beijing Jiaotong University, 2015, 17–43.
16 OUYANG H, ZHANG K, ZHANG P, et al Repetitive compensation of fluctuating DC link voltage for railway traction drives[J]. IEEE Transactions on Power Electronics, 2011, 26 (8): 2160- 2171
doi: 10.1109/TPEL.2011.2105283
17 赵卫, 刘文生 牵引变流器网侧电流低次谐波抑制的研究[J]. 机车电传动, 2017, 3: 24- 29
ZHAO Wei, LIU Wen-sheng Research on suppression of net-side low-order harmonics current in traction converter[J]. Electric Drive for Locomotive, 2017, 3: 24- 29
18 HOLTZ J Pulse width modulation: a survey[J]. IEEE Transactions on Industrial Electronics, 1992, 39 (5): 410- 420
doi: 10.1109/41.161472
19 HOLMES D, LIPO T. Pulse width modulation for power converters: principle and practice [M]. New Jersey: Wiley-IEEE Press, 2003: 396–415.
20 韦克康, 郑琼林, 周明磊, 等 低开关频率下混合脉宽调制方法研究[J]. 北京交通大学学报, 2011, 35 (5): 106- 112
WEI Ke-kang, ZHENG Qiong-lin, ZHOU Ming-lei, et al Study on a hybrid PWM method under low switching frequency[J]. Journal of Beijing Jiaotong University, 2011, 35 (5): 106- 112
doi: 10.3969/j.issn.1673-0291.2011.05.020
21 王堃, 游小杰, 王琛琛, 等 低开关频率下SHEPWM和SVPWM同步调制策略比较研究[J]. 电工技术学报, 2015, 30 (14): 333- 341
WANG Kun, YOU Xiao-jie, WANG Chen-chen, et al Research on the comparison of synchronized modulation of SHEPWM and SVPWM under low switching frequency[J]. Transactions of China Electrotechnical Society, 2015, 30 (14): 333- 341
doi: 10.3969/j.issn.1000-6753.2015.14.045
[1] 林京京,沈艳霞. 永磁同步电机驱动系统电流传感器容错控制[J]. 浙江大学学报(工学版), 2019, 53(9): 1815-1825.
[2] 张明晖,杨家强,陈磊,楼佳羽. 基于扩张状态观测器的永磁电机电流预测控制[J]. 浙江大学学报(工学版), 2016, 50(7): 1387-1392.
[3] 肖文生,崔俊国,刘健,吴晓东,黄红胜. 直驱采油用永磁同步电机削弱齿槽转矩优化[J]. 浙江大学学报(工学版), 2015, 49(1): 173-180.
[4] 肖文生,崔俊国,刘健,吴晓东,黄红胜. 直驱采油用永磁同步电机削弱齿槽转矩优化[J]. 浙江大学学报(工学版), 2014, 48(8): 1-8.
[5] 盖江涛, 黄庆, 黄守道, 刘旺, 周滔滔, 潘小清. 基于模型补偿的永磁同步电机自抗扰控制[J]. J4, 2014, 48(4): 581-588.
[6] 王萌, 杨家强, 祝长生. 永磁同步电机的极坐标系无位置传感器控制[J]. 浙江大学学报(工学版), 2014, 48(10): 1893-1900.
[7] 刘子建, 吴敏, 陈鑫, 王春生. 永磁同步电机混合非线性控制策略[J]. J4, 2010, 44(7): 1303-1307.