Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (1): 193-199    DOI: 10.3785/j.issn.1008-973X.2019.01.022
电气工程     
异极型径向磁轴承的非线性解析模型
钟云龙, 吴立建, 黄晓艳, 方攸同
浙江大学 电气工程学院, 浙江 杭州 310027
Nonlinear analytical model of heteropolar radial magnetic bearing
ZHONG Yun-long, WU Li-jian, HUANG Xiao-yan, FANG You-tong
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1306 KB)   HTML
摘要:

针对异极型径向磁轴承(HeRMB)气隙磁密分布和电磁力的计算,建立等效磁路法和气隙磁导函数相结合的非线性解析模型.通过计算磁轴承磁路各部分的集中磁导,建立计及饱和效应的等效磁路.采用考虑齿槽效应和转子偏心的气隙磁导函数计算气隙磁密分布,得到作用在转子上的电磁力,利用有限元验证了该解析模型的计算精度. 利用建立的解析模型,研究偏置电流的影响和耦合效应.结果表明,偏置电流的变化对电磁力特性有很明显的影响;当转子无偏心时,XY 2个方向相互解耦,当转子有偏心时,2个方向之间会有耦合.

Abstract:

A nonlinear analytical model combining the equivalent magnetic circuit method and the air gap permeance function was developed in order to predict the air gap flux density distribution and electromagnetic force of a heteropolar radial magnetic bearing (HeRMB). The equivalent magnetic circuit considering the saturation effect was established by calculating the lumped permeance of each segment of the HeRMB. The air gap permeance function considering the slotting effect and rotor eccentricity was used to determine the air gap flux density distribution. Then the electromagnetic force was predicted. The accuracy of the developed analytical model was verified by the finite element method. The influence of bias current and the coupling effect between two directions were analyzed by the proposed model. Results show that the bias current significantly affects the electromagnetic force. The X and Y directions are decoupled without rotor eccentricity, and they are coupled when the rotor deviates from the center position.

收稿日期: 2018-01-06 出版日期: 2019-01-07
CLC:  TH133  
基金资助:

国家自然科学基金资助项目(51677169,51637009);中央高校基本科研业务费专项资金资助项目(2017QNA4016)

通讯作者: 吴立建,男,教授.orcid.org/0000-0002-5248-9122.     E-mail: ljw@zju.edu.cn
作者简介: 钟云龙(1991-),男,博士生,从事电机与磁轴承的研究.orcid.org/0000-0003-3648-6746.E-mail:zhongyunlong@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

钟云龙, 吴立建, 黄晓艳, 方攸同. 异极型径向磁轴承的非线性解析模型[J]. 浙江大学学报(工学版), 2019, 53(1): 193-199.

ZHONG Yun-long, WU Li-jian, HUANG Xiao-yan, FANG You-tong. Nonlinear analytical model of heteropolar radial magnetic bearing. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(1): 193-199.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.01.022        http://www.zjujournals.com/eng/CN/Y2019/V53/I1/193

[1] SCHWEITZER G, MASLEN E H. Magnetic bearings:theory, design, and application to rotation machinery[M]. Berlin, Germany:Springer, 2009:82-84.
[2] 蒋科坚, 祝长生. 电磁轴承-柔性转子系统多目标加权的主动振动控制[J]. 浙江大学学报:工学版, 2016, 50(10):1946-1951 JIANG Ke-jian, ZHU Chang-sheng. Vibration suppressing with mixed weight for multi-targets in active magnetic bearing-flexible rotor system[J]. Journal of Zhejiang University:Engineering Science, 2016, 50(10):1946-1951
[3] 袁野, 孙玉坤, 张维煜, 等. 新型飞轮储能备用轴承磁力数值分析[J]. 电机与控制学报, 2016, 20(7):95-101 YUAN Ye, SUN Yu-kun, ZHANG Wei-yu, et al. Magnetic force numerical analysis of auxiliary bearings in optimized flywheel storage system[J]. Electric Machines and Control, 2016, 20(7):95-101
[4] LE Y, FANG J, WANG K. Design and optimization of a radial magnetic bearing for high-speed motor with flexible rotor[J]. IEEE Transactions on Magnetics, 2015, 51(6):1-13.
[5] MATSUZAKI T, TAKEMOTO M, OGASAWARA S, et al. A basic study of a novel homopolar-type magnetic bearing unifying four C-shaped cores for high output and low loss[J]. IEEE Transactions on Magnetics, 2015, 51(11):1-4.
[6] 朱熀秋, 张仲, 诸德宏, 等. 交直流三自由度混合磁轴承结构与有限元分析[J]. 中国电机工程学报, 2007, 27(12):77-81 ZHU Huang-qiu, ZHANG Zhong, ZHU De-hong, et al. Structure and finite element analysis of an AC-DC three degrees of freedom hybrid magnetic bearing[J]. Proceedings of the CSEE, 2007, 27(12):77-81
[7] 杨志轶, 赵韩, 田杰, 等. 采用有限元法分析径向永磁轴承的力学特性[J]. 合肥工业大学学报:自然科学版, 2001, 24(4):477-481 YANG Zhi-yi, ZHAO Han, TIAN Jie, et al. Analysis of mechanical characteristics of radial permanent bearings using finite element method[J]. Journal of Hefei University of Technology:Natural Science, 2001, 24(4):477-481
[8] LIU X, HAN B. The multiobjective optimal design of a two-degree-of-freedom hybrid magnetic bearing[J]. IEEE Transactions on Magnetics, 2014, 50(9):1-14.
[9] XU S, SUN J. Decoupling structure for heteropolar permanent magnet biased radial magnetic bearing with subsidiary air-gap[J]. IEEE Transactions on Magnetics, 2014, 50(8):1-8.
[10] 张云鹏, 刘淑琴, 李红伟, 等. 基于磁路分析的轴向混合磁轴承径向承载力解析计算[J]. 电工技术学报, 2012, 27(5):137-142 ZHANG Yun-peng, LIU Shu-qin, LI Hong-wei, et al. Calculation of radial electromagnetic force of axial hybrid magnetic bearing based on magnetic circuit analysis[J]. Transactions of China Electrotechnical Society, 2012, 27(5):137-142
[11] 王曦, 房建成, 樊亚洪, 等. 轴向力偏转五自由度永磁偏置磁轴承及磁路解耦设计[J]. 中国电机工程学报, 2011, 31(17):91-98 WANG Xi, FANG Jian-cheng, FAN Ya-hong, et al. Axial force tilting permanent-magnet-biased magnetic bearing with five degrees of freedom and magnetic field decoupling design[J]. Proceedings of the CSEE, 2011, 31(17):91-98
[12] PICHOT M A, DRIGA M D. Loss reduction strategies in design of magnetic bearing actuators for vehicle applications[J]. IEEE Transactions on Magnetics, 2005, 41(1):492-496.
[13] MATSUZAKI T, TAKEMOTO M, OGASAWARA S, et al. Novel structure of three-axis active-control-type magnetic bearing for reducing rotor iron loss[J]. IEEE Transactions on Magnetics, 2016, 52(7):1-4.
[14] WANG K, WANG D, SHEN Y, et al. Subdomain method for permanent magnet biased homo-polar radial magnetic bearing[J]. IEEE Transactions on Magnetics, 2016, 52(7):1-5.
[15] WU L J, ZHU Z Q, STATON D, et al. Comparison of analytical models for predicting electromagnetic performance in surface-mounted permanent magnet machines[C]//Proceedings of IEEE Vehicle Power and Propulsion Conference. Lille:IEEE, 2010:1-6.
[16] MASLEN E H, HERMANN P, SCOTT M, et al. Practical limits to the performance of magnetic bearings:peak force, slew rate, and displacement sensitivity[J]. Journal of Tribology, 1989, 111(2):331-336.
[17] KANG K, PALAZZOLO A. Homopolar magnetic bearing saturation effects on rotating machinery vibration[J]. IEEE Transactions on Magnetics, 2012, 48(6):1984-1994.
[18] 郭凤仪. 电器学[M]. 1版. 北京:机械工业出版社, 2013.
[19] ZHU Z Q, HOWE D. Instantaneous magnetic field distribution in brushless permanent magnet DC motors. Ⅲ. effect of stator slotting[J]. IEEE Transactions on Magnetics, 2002, 29(1):124-135.
[20] WU L, WANG D, SU Z, et al. Analytical model of radial permanent magnet biased magnetic bearing with assist poles[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(7):1-5.

[1] 于东, 张进华, 王东峰, 李小虎, 洪军. RV减速器主轴承摩擦力矩理论计算及特性分析[J]. 浙江大学学报(工学版), 2017, 51(10): 1928-1936.