Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (12): 2295-2305    DOI: 10.3785/j.issn.1008-973X.2018.12.007
土木工程     
软岩土石混合体的击实特性与细观机理研究
王强, 胡新丽, 徐迎, 周昌, 徐楚
中国地质大学(武汉) 工程学院, 湖北 武汉 430074
Investigation on compaction characteristics and meso-mechanism of soil-rock mixture with soft rock blocks
WANG Qiang, HU Xin-li, XU Ying, ZHOU Chang, XU Chu
Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China
 全文: PDF(1950 KB)   HTML
摘要:

以富宁换流站地基工程为背景,采用室内大型击实试验与数值模拟相结合的方法,探讨不同块石质量分数及不同块石形状的软岩土石混合体的击实特性及其细观机理.结果表明,软岩土石混合体的击实过程可以分为初始压密阶段、快速压密阶段和稳定阶段,且块石的破碎主要发生在初始压密阶段;随着块石质量分数的增加,软岩土石混合体的最大干密度先增大后减小,当块石质量分数为60%时达到最大值;击实后软岩土石混合体内部接触力分布服从接触力分布概率密度函数,且随着块石质量分数的增加,高于平均值的接触力的概率密度增大.块石的形状因子越大,块石的破碎率越高,击实后软岩土石混合体的最大干密度随块石的形状因子的增大先增大后减小.

Abstract:

Based on the foundation engineering of Funing converter station, the compaction characteristics and meso-mechanism of soil-rock mixture with different stone mass fractions and different stone shapes were investigated by means of the compaction test and numerical simulation. Results show that the compaction process of soil rock mixture with soft rock blocks can be divided into initial compaction stage, rapid compaction stage and stable stage; the crushing of the stone mainly occurs in the initial compaction stage. With the increasing of stone mass fraction, the maximum dry density of soil rock mixture with soft rock blocks first increases and then decreases, and the optimum stone mass fraction is 60%. The contact force distribution in compacted soil-rock mixture obeys the probability density function of contact force, and the probability density of the contact force above the average contact force increases with the increase of stone mass fraction. The larger the shape factor of the rock block is, the higher the crushing rate of the stone is; after the compaction, the maximum dry density of soil rock mixture with soft rock blocks first increases and then decreases with the increasing of the shape factor of rock blocks.

收稿日期: 2017-11-05 出版日期: 2018-12-13
CLC:  TU411  
基金资助:

国家自然科学基金重点基金资助项目(41630643);国家“973”重点研究发展规划资助项目(2011CB710604)

通讯作者: 胡新丽,女,教授,博导.orcid.org/0000-0002-4529-1898.     E-mail: huxinli@cug.edu.cn
作者简介: 王强(1990-),男,博士生,从事岩土工程数值分析与灾害防治研究.orcid.org/0000-0001-8491-2274.E-mail:wangqiang@cug.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

王强, 胡新丽, 徐迎, 周昌, 徐楚. 软岩土石混合体的击实特性与细观机理研究[J]. 浙江大学学报(工学版), 2018, 52(12): 2295-2305.

WANG Qiang, HU Xin-li, XU Ying, ZHOU Chang, XU Chu. Investigation on compaction characteristics and meso-mechanism of soil-rock mixture with soft rock blocks. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2295-2305.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.12.007        http://www.zjujournals.com/eng/CN/Y2018/V52/I12/2295

[1] 冯文生, 郑治. 大粒径填料工程特性的试验和研究[J]. 公路交通技术, 2004(1):1-4 FENG Wen-sheng, ZHENG Zhi. Tests and researches on engineering properties of large particle size fillers[J]. Technology of Highway and Transport, 2004(1):1-4
[2] 中华人民共和国国家标准编写组. GB50021-2001岩土工程勘察规范[S]. 北京:中国建筑工业出版社, 2001.
[3] 许锡昌, 周伟, 韩卓, 等. 土石混合料的压实特性研究[J]. 岩土力学, 2010, 31(增2):115-118 XU Xi-chang, ZHOU Wei, HAN Zhuo, et al. Research on compaction properties of soil-aggregate mixture[J]. Rock and Soil Mechanics, 2010, 31(Suppl.2):115-118
[4] 廖秋林, 李晓, 李守定. 土石混合体重塑样制备及其压密特征与力学特性分析[J]. 工程地质学报, 2010, 18(3):385-391 LIAO Qiu-lin, LI Xiao, LI Shou-ding. Sample remodeling compactness characteristic and mechanical behaviors of rock-soil mixtures[J]. Journal of Engineering Geology, 2010, 18(3):385-391
[5] 杜俊, 侯克鹏, 梁维, 等. 粗粒土压实特性及颗粒破碎分形特征试验研究[J]. 岩土力学, 2013, 34(增1):155-161 DU Jun, HOU Ke-peng, LIANG Wei, et al. Experimental study of compaction characteristics and fractal feature in crushing of coarse-grained soils[J]. Rock and Soil Mechanics, 2013, 34(Suppl.1):155-161
[6] 乔兰, 庞林祥, 李远, 等. 超大粒径人工砾石土的击实特性试验研究[J]. 岩石力学与工程学报, 2014, 33(3):484-492 QIAO Lan, PANG Lin-xiang, LI Yuan, et al. Experimental study of compaction characteristics of oversized clay mixed with gravels[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(3):484-492
[7] WANG J, ZHANG H, DENG D, et al. Effects of mudstone particle content on compaction behavior and particle crushing of a crushed sandstone-mudstone particle mixture[J]. Engineering Geology, 2013, 167:1-5.
[8] CUNDALL P A. A computer model for simulating progressive large-scale movements in blocky rock systems[C]//Proceedings of the Symposium of the International Society of Rock Mechanics. Nancy:ISRM, 1971:2-8.
[9] 贾学明, 柴贺军, 郑颖人. 土石混合料大型直剪试验的颗粒离散元细观力学模拟研究[J]. 岩土力学, 2010, 31(9):2695-2703 JIA Xue-ming, CHAIHe-jun, ZHENG Ying-ren. Mesomechanics research of large direct shear test on soil and rock aggregate mixture with particle flow code simulation[J]. Rock and Soil Mechanics, 2010, 31(9):2695-2703
[10] 赵金凤, 严颖, 季顺迎. 基于离散元模型的土石混合体直剪试验分析[J]. 固体力学学报, 2014, 35(2):124-134 ZHAO Jin-feng, YAN Ying, JI Shun-ying. Analysis of direct shear test of soil-rock mixture based on discrete element model[J]. Chinese Journal of Solid Mechanics, 2014, 35(2):124-134
[11] 徐文杰, 张海洋, 许强, 等. 土石混合体直剪离散元数值试验研究[J]. 计算力学学报, 2014, 31(2):228-234 XU Wen-jie, ZHANG Hai-yang, XU Qiang, et al. Numerical simulations of direct shear test with soil-rock mixture using discrete element method[J]. Chinese Journal of Computational Mechanics, 2014, 31(2):228-234
[12] 徐文杰, 胡瑞林, 王艳萍. 基于数字图像的非均质岩土材料细观结构PFC2D模型[J]. 煤炭学报, 2007, 32(4):358-362 XU Wen-jie, HU Rui-lin, WANG Yan-ping. PFC2D model for meso-structure of inhomogeneous geomaterial based on digital image processing[J]. Journal of China Coal Society, 2007, 32(4):358-362
[13] 丁秀丽, 李耀旭, 王新. 基于数字图像的土石混合体力学性质的颗粒流模拟[J]. 岩石力学与工程学报, 2010, 29(3):477-484 DING Xiu-li, LI Yao-xu, WANG Xin. Particle flow modeling mechanical properties of soil and rock mixtures based on digital image[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3):477-484
[14] CHENG Y P, NAKATA Y, BOLTON M D. Discrete element simulation of crushable soil[J]. Geotechnique, 2003, 53(7):633-641.
[15] LIU Y, LIU H, MAO H. DEM investigation of the effect of intermediate principle stress on particle breakage of granular materials[J]. Computers and Geotechnics, 2017, 84:58-67.
[16] 孔祥臣, 陈谦应, 贾学明. 土石混合料振动击实试验的PFC~(2D)模拟研究[J]. 重庆交通学院学报, 2005(1):61-67 KONG Xiang-chen, CHEN Oian-ying, JIA Xue-ming. PFC2D simulation research on vibrating compaction test of soil-aggregate mixture[J]. Journal of Chongqng Jiaotong University, 2005(1):61-67
[17] 王团结. 基于三维离散元的土石混合料振动压实特性研究[D]. 郑州大学, 2015. WANG Tuan-jie. Numerical simulation for compacting characteristic of earth-rock mixture with 3D DEM[D]. Zhengzhou University, 2015.
[18] 李晓柱, 刘洋, 吴顺川. 堆石坝现场碾压试验与离散元数值分析[J]. 岩石力学与工程学报, 2013, 32(增2):3123-3133 LI Xiao-zhu, LIU Yang, WU Shun-chuan. Field roller compaction test and discrete element analysis of rockfill dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(Suppl.2):3123-3133
[19] MA Z Y, DANG F N, LIAO H J. Numerical study of the dynamic compaction of gravel soil ground using the discrete element method[J]. Granular Matter, 2014, 16(6):881-889.
[20] ZEKKOS D, MEDLEY E. Geopractitioner approaches to working with antisocial mélanges[J]. Geological Society of America Special Papers, 2011:261-277.
[21] XU W J, XU Q, HU R L. Study on the shear strength of soil-rock mixture by large scale direct shear test[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(8):1235-1247.
[22] 米隆. 基底模量对路基振动压实能量影响的数值计算分析[J]. 铁道学报, 2008, 30(6):69-74 MI Long. The influence of base modulus on compaction energy in subgrade[J]. Journal of the China Railway Society, 2008, 30(6):69-74
[23] 王龙, 解晓光, 李长江. 级配碎石性能的振动与击实成型对比试验[J]. 中国公路学报, 2007, 20(6):19-24 WANG Long, XIE Xiao-guang, LI Chang-jiang. Comparative experiment on vibrating compaction and modified proctor compaction of performance of graded crushed aggregate[J]. China Journal of Highway and Transport, 2007, 20(6):19-24
[24] 王龙, 解晓光. 水泥稳定碎石振动与静压成型物理力学指标关系[J]. 哈尔滨工业大学学报, 2012, 44(10):70-74 WANG Long, XIE Xiao-guang. Relationship on index of physics and mechanics cement-stabilized aggregates between vibrating and static compacting methods[J]. Journal of Harbin Institute of Technology, 2012, 44(10):70-74
[25] 曹周阳. 秦巴山区变质软岩路堤填料路用性能及振动压实工艺研究[D]. 西安:长安大学, 2013. CAO Zhou-yang. Road engineering properties of metamorphic soft rock used as embankment fillng in Qin-ba mountain areas and vibration compaction technology research[D]. Xi'an:Chang'an University, 2013.
[26] 徐文杰, 胡瑞林. 土石混合体概念、分类及意义[J]. 水文地质工程地质, 2009, 36(4):50-56 XU Wen-jie, HU Rui-lin. Conception classification and significations of soil-rock mixture[J]. Hydrogeology and Engineering Geology, 2009, 36(4):50-56
[27] RADJAI F, JEAN M, MOREAU J J, et al. Force distributions in dense two-dimensional granular systems[J]. Physical Review Letters, 1996, 77(2):274.
[28] 徐文杰, 许强. 岩土材料细观结构定量化表述方法研究:以土石混合体为例[J]. 岩石力学与工程学报, 2012, 31(3):499-506 XU Wen-jie, XU Qiang. Study of quantitative description methods of geomaterial meso-structure:taking soil rock mixture for example[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3):499-506

[1] 徐辉, 缪建冬, 陈萍, 詹良通, 罗小勇. 药剂稳定化垃圾焚烧飞灰的工程特性测试研究[J]. 浙江大学学报(工学版), 2019, 53(1): 1-10.
[2] 陈颖骐, 王全才. 滑坡设计推力优化计算[J]. 浙江大学学报(工学版), 2018, 52(7): 1320-1328.
[3] 黄铭枫, 李强, 涂志斌, 楼文娟. 基于Copula函数的杭州地区多风向极值风速估计[J]. 浙江大学学报(工学版), 2018, 52(5): 828-835.
[4] 吴建奇, 杨骁, 徐旭, 刘飞禹. 部分排水条件下饱和红黏土循环试验研究[J]. 浙江大学学报(工学版), 2017, 51(7): 1309-1316.