Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (12): 2271-2278    DOI: 10.3785/j.issn.1008-973X.2018.12.004
机械工程     
线控制动系统踏板感觉模拟器设计与改进
刘宏伟1, 刘伟1, 林光钟1, 张杰1, 李道飞2
1. 万向钱潮股份有限公司技术中心, 浙江 杭州 311215;
2. 浙江大学 车辆工程研究所, 浙江 杭州 310027
Design and improvement of brake pedal feel emulator in electro-hydraulic brake system
LIU Hong-wei1, LIU Wei1, LIN Guang-zhong1, ZHANG Jie1, LI Dao-fei2
1. Technology Center of Wanxiang Qianchao Co. Ltd, Hangzhou 311215, China;
2. Institute of Vehicular Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2928 KB)   HTML
摘要:

设计开发一种线控制动(EHB)系统样机,选取不同过流孔径的踏板模拟器常闭电磁阀进行踏板行程-踏板力对比试验.结果表明:当将单个电磁阀直接接入踏板感觉模拟器回路时,随着制动力加载速度的提高,会产生实际制动踏板行程-踏板力关系曲线偏离目标曲线的问题,并且电磁阀孔径越小,偏离越大,借助于数学推导得出电磁阀过流孔径与踏板速度响应之间的理论关系.设计一种液压先导阀加入到踏板模拟器回路中,以提高系统通流能力和踏板速度响应,液压先导阀由原回路中的电磁阀控制.对改进的踏板模拟器回路进行仿真及试验,结果均表明:改进过的回路可较好地实现踏板行程-踏板力曲线精度,曲线受踏板力加载速度变化影响小,同时可使模拟器常闭电磁阀工作功耗更低,提高了系统的可靠性.

Abstract:

A kind of electro-hydraulic brake system prototype was designed and developed. Some solenoid valves with different flow holes, as a switch of pedal feel emulator circuit, was tested in pedal stroke-force (S-F) curves contrast tests. Results show that there is bigger offset of pedal S-F curves from the target curve with the increase of actual braking force loading speed. The offset from target pedal S-F curves is bigger if the flow holes of the solenoid valves is smaller. The theoretical relationship between flow hole diameters of solenoid valves and barking force loading speed is mathematically derived. A hydraulic pilot valve was designed and added into the pedal feel emulator circuit to improve through-flow capacity of system and velocity response of braking pedal. The hydraulic pilot valve was controlled by original solenoid valve in circuit. The new revised pedal feel emulator circuit was simulated and tested. Results show that the new circuit has good pedal S-F curve accuracy, which is little susceptible to braking force loading speed, and at the same time the solenoid valve can work in lower power consumption which can improve the system reliability.

收稿日期: 2017-12-07 出版日期: 2018-12-13
CLC:  U463.52  
基金资助:

浙江省重点研发计划资助项目(2018C01058);杭州市重大科技创新专项资助项目(20162011A031)

作者简介: 刘宏伟(1985-),男,工程师,从事新能源汽车线控制动系统、传动系统研究.orcid.org/0000-0003-2203-9013.E-mail:liuhongwei@jszx.wxqc.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

刘宏伟, 刘伟, 林光钟, 张杰, 李道飞. 线控制动系统踏板感觉模拟器设计与改进[J]. 浙江大学学报(工学版), 2018, 52(12): 2271-2278.

LIU Hong-wei, LIU Wei, LIN Guang-zhong, ZHANG Jie, LI Dao-fei. Design and improvement of brake pedal feel emulator in electro-hydraulic brake system. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2271-2278.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.12.004        http://www.zjujournals.com/eng/CN/Y2018/V52/I12/2271

[1] 林志轩, 高晓杰. 制动踏板感觉研究现状[J]. 农业装备与车辆工程, 2007, 196(6):4-7 LIN Zhi-xuan, GAO Xiao-jie. The research summarization of the brake pedal feeling[J]. Agricultural Equipment and Vehicle Engineering, 2007, 196(6):4-7
[2] 林逸, 沈沉, 王军, 等. 汽车线控制动技术及发展[J]. 汽车技术, 2005(12):1-3 LIN Yi, SHEN Chen, WANG Jun, et al. Automotive by wire control technology and development[J]. Automobile Technology, 2005(12):1-3
[3] 潘宁, 于良耀, 张雷, 等. 电液复合制动系统防抱控制的舒适性[J]. 浙江大学学报:工学版, 2017, 51(1):9-11 PAN Ning, YU Liang-yao, ZHANG Lei, et al. Anti-lock b raking control in coordinated braking system considering braking comfort[J]. Journal of Zhejiang University:Engineering Science, 2017, 51(1):9-11
[4] 裴晓飞, 董兴智, 张灿明, 等. 汽车制动踏板特性仿真及踏板感觉优化[J]. 汽车工程学报, 2017, 7(1):052-060 PEI Xiao-fei, DONG Xing-zhi, ZHANG Can-ming, et al. Si mulation of brake pedal characteristic and optimization of brake pedal feel[J]. Chinese Journal of Automotive Engineering, 2017, 7(1):052-060
[5] OHTAIN Y, INNAMI T, OBATA T, et al. Development of an electrically-driven intelligent brake unit[C]//SAE Paper. Detroit:SAE World Congress, 2011:2011-01-0572.
[6] 金智林, 郭立书, 赵又群, 等. 踏板感觉可控的汽车制动踏板模拟器研究[J]. 系统仿真学报, 2010, 22(12):2795-2798 JIN Zhi-lin, GUO Li-shu, ZHAO You-qun, et al. Research on brake pedal emulator of vehicle with controllable pedal feeling[J]. Journal of System Simulation, 2010, 22(12):2795-2798
[7] Pasquet. Brake pedal simulator, master cylinder for a vehicle and method of operation of said simulator:EP, 1600347A1[P]. 2005-05-23.
[8] 王奎洋, 唐金花, 刘成晔, 等. 线控制动系统踏板感觉模拟器的分析与设计[J]. 机床与液压, 2011, 39(21):108-111. WANG Kui-Yang, TANG Jin-hua, LIU Cheng-ye, et al. Aalysis and design on the pedal feeling simulator of brake-by-wire[J]. Machine Tool and Hydraulics, 2011, 39(21):108-111.
[9] VON A C, KARNER J. Brake system for hybrid and electric vehicles[C]//SAE Paper. Detroit:SAE World Congress, 2009:2009-01-1217.
[10] NAKAURA E, SOGA M, SAKAI A, Et al. Development of electronically controlled brake system for hybrid vehicle[C]//SAE Paper. Detroit:SAE World Congress, 2002:2002-01-0300.
[11] 丰田自动车株式会社. 用于产生制动踏板阻力的设备:200810007052.6[P]. 2008-01-25.
[12] KOIZUMI N. Effect of phenolic brake piston tribology on brake pedal feel[C]//SAE Paper. Florida:SAE Annual Brake Colloquium. 2013:2013-01-2051.
[13] KARLHEINZ B, MARTIN S, BERT B. A new approach to investigate the vehicle interface driver/brake pedal under real road conditions in view of oncoming brake-by-wiresystems[C]//SAE Paper. Detroit:Future Transportation Technology Conference, 1999:1999-01-2949.
[14] 刘杨, 孙泽昌, 冀文斌. 电液复合制动系统踏板感觉及其影响因素[J]. 吉林大学学报:工学版, 2015, 45(4):1049-1055 LIU Yang, SUN Ze-chang, JI Wen-bin. Brake pedal feel and its influencing factors for electro-hydraulic brake system[J]. Journal of Jilin University:Engineering and Technology Edition, 2015, 45(4):1049-1055
[15] 万向集团公司. 车辆集成电控液压制动系统:201510254642.9[P]. 2015-08-26.

No related articles found!