Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (9): 1771-1776    DOI: 10.3785/j.issn.1008-973X.2018.09.018
电气工程     
基于开关管电压检测的图腾柱整流器控制方案
徐厚建, 姚文熙
浙江大学 电气工程学院, 浙江 杭州 310027
Totem pole rectifier control scheme with switches' voltage detection
XU Hou-jian, YAO Wen-xi
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1177 KB)   HTML
摘要:

分析现有电流过零检测方法,提出一种新的图腾柱整流器控制方法.该方法通过检测MOSFET源漏极之间的电压,并与阈值电压比较,其结果作为临界连续模式的下个开关开启信号,控制开关管导通,可以有效降低转换器的开关损耗和检测电路的损耗.分析输入电流畸变的原因,给出变开通时间的解决方案,得到输入电流的总谐波失真(THD)为4.11%.通过两相交错并联大幅度降低了电路输入电流的纹波;制作3.3 kW两路交错并联的样机,并进行实验验证,结果表明:实测峰值效率达到98.97%.

Abstract:

A new control method of totem pole rectifier was proposed by analyzing the existing zero-crossing detection method. This method turned on the MOSFET according to the comparing results between the voltage across MOSFETs and the threshold voltage, which effectively reduced the loss of the detection circuit and switching loss. The reason of the input current distortion was analyzed, and the solution of variable on time was given. The total hamonic distortion (THD) of the input current was 4.11%; the input current ripple was reduced by two-phase interleaved. Finally, A 3.3 kW prototype was fabricated; the exprimental verification shows that the peak efficiency at 1.6 kW was 98.97%.

收稿日期: 2017-06-23 出版日期: 2018-09-20
CLC:  TM46  
基金资助:

国家自然科学基金资助项目(51677168)

通讯作者: 姚文熙,男,副教授.orcid.org/0000-0003-4831-5979.     E-mail: 姚文熙,男,副教授.orcid.org/0000-0003-4831-5979.E-mail:ywxi@zju.edu.cn
作者简介: 徐厚建(1992-),男,硕士生,从事AC/DC变换技术研究.orcid.org/0000-0002-5690-6229.E-mail:xuhoujian@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

徐厚建, 姚文熙. 基于开关管电压检测的图腾柱整流器控制方案[J]. 浙江大学学报(工学版), 2018, 52(9): 1771-1776.

XU Hou-jian, YAO Wen-xi. Totem pole rectifier control scheme with switches' voltage detection. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(9): 1771-1776.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.09.018        http://www.zjujournals.com/eng/CN/Y2018/V52/I9/1771

[1] HUANG L, YAO W, LU Z. Interleaved totem-pole bridgeless PFC rectifier with ZVS and low input current ripple[C]//2015 Energy Conversion Congress and Exposition. Montreal:IEEE, 2015:166-171
[2] KIM Y S, SUNG W Y, LEE B Y. Comparative performance analysis of high density and efficiency PFC topologies[J]. IEEE Transactions on Power Electronics, 2014, 29(6):2666-2679.
[3] SU B, LU Z. An interleaved totem-pole boost bridgeless rectifier with reduced reverse-recovery problems for power factor correction[J]. IEEE Transactions on Power Electronics, 2010, 25(6):1406-1415.
[4] O'GRADY M, ZHU K, DODGE J, et al. Active switch impact on CCM totem-pole PFC efficiency[C]//2017 International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy Mangement. Nuremberg:IEEE, 2017:1-6.
[5] 王议锋, 徐殿国, 徐博, 等. 图腾柱式无桥零纹波交错并联Boost功率因数校正器[J]. 电工技术学报, 2011, 26(9):175-182 WANG Yi-feng, XU Dian-guo, XU Bo, et al. An interleaved totem-Pole bridgeless boost PFC rectifier with zero-ripple current filter[J]. Transactions of China Electrotechnical Society, 2011, 26(9):175-182
[6] HUBER L, IRVING B T, JOVANOVIC M M. Open-loop control methods for interleaved DCM/CCM boundary boost PFC converters[J]. IEEE Transactions on Power Electronics, 2008, 23(4):1649-1657.
[7] HUBER L, IRVING B T, JOVANOVIC M M. Open-loop control methods for interleaved DCM/CCM boundary boost PFC converters[J]. Power Electronics, IEEE Transactions on, 2008, 23(4):1649-1657.
[8] HUBER L, IRVING B T, JOVANOVIC M M. Review and stability analysis of PLL-based interleaving control of DCM/CCM boundary boost PFC converters[J]. IEEE Transactions on Power Electronics, 2009, 24(8):1992-1999.
[9] SU B, ZHANG J, LU Z. Totem-pole boost bridgeless PFC rectifier with simple zero-current detection and full-Range ZVS operating at the boundary of DCM/CCM[J]. IEEE Transactions on Power Electronics, 2011, 26(2):427-435.
[10] BIELA J, HASSLER D, MINIBOCK J, et al. Optimal design of a 5kW/dm398.3% efficient TCM resonant transition single-phase PFC rectifier[C]//2010 Inrenational Power Electronics Conference. Sapporo:IEEE, 2010:1709-1716
[11] KIM J W, CHOI S M, KIM K T. Variable on-time control of the critical conduction mode boost power factor forrection converter to improve zero-crossing distortion[C]//2005 International Conference on Power Electronics and Drives Systems. Kuala Lumpur:IEEE, 2005:1542-1546
[12] SUULLIVAN C R, BOUAYAD H, SONG Y. Inductor design for low loss with dual foil windings and quasi-distributed gap[C]//2013 Energy Conversion Congress and Exposition. Danver:IEEE, 2013:3693-3699
[13] ACKERMANN B, LEWALTER A. Two-dimensional calculation of winding losses in planar magnetic components[C]//2001 International Conference on Power Electronics and Drive Systems. Denpasar:IEEE, 2001:674-679

[1] 宿紫鹏, 杨磊, 杨家强, 高敏. 基于开关表决策的APF与TSC混合系统投切控制方法[J]. 浙江大学学报(工学版), 2018, 52(11): 2201-2209.
[2] 傅仕航, 侯庆会, 岳奥飞, 石健将. 基于“第二类”双重移相控制的双有源桥DC-DC变换器[J]. 浙江大学学报(工学版), 2018, 52(6): 1167-1176.
[3] 刘鑫, 郑祥杰, 侯庆会, 石健将. 变压器串并联LLC+Buck级联DC-DC变换器的均流特性[J]. 浙江大学学报(工学版), 2018, 52(4): 806-818.
[4] 李新, 肖龙, 刘国梁, 邵雨亭, 陈国柱. 基于相位补偿和交叉前馈补偿的VSG功率振荡抑制策略[J]. 浙江大学学报(工学版), 2018, 52(3): 569-576.
[5] 袁庆伟, 赵荣祥. 考虑死区的三相PWM逆变器共模电压抑制技术[J]. 浙江大学学报(工学版), 2017, 51(11): 2276-2286.
[6] 刘威, 姚文熙, 吕征宇. 半桥三电平LLC谐振变换器的调制方法[J]. 浙江大学学报(工学版), 2017, 51(8): 1653-1661.