Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (7): 1364-1369    DOI: 10.3785/j.issn.1008-973X.2018.07.017
机械与能源工程     
锌合金熔融沉积三维打印工艺
杨立宁, 单忠德, 戎文娟, 刘丰, 杨硕
机械科学研究总院 先进成形技术与装备国家重点实验室, 北京 100044
Three-dimensional printing technology of zinc alloy fused and deposition
YANG Li-ning, SHAN Zhong-de, RONG Wen-juan, LIU Feng, YANG Shuo
State Key Laboratory of Advanced Forming Technology and Equipment, China Academy of Machinery Science and Technology, Beijing 100044, China
 全文: PDF(7131 KB)   HTML
摘要:

针对现有金属件增材制造技术存在设备开发及运行成本高、成形效率低的问题,提出新的低成本且适用于中、低熔点金属材料的增材制造技术——熔融沉积3D打印成形,介绍了该技术原理.采用自主开发的成形设备,开展锌合金熔融沉积3D打印成形工艺试验,研究喷嘴高度、扫描速度和搭接率对成形效果的影响.研究结果表明:金属熔融沉积单道轨迹宽度与高度成反比例关系;当喷嘴高度为25~35 mm,扫描速度为8 mm/s时,所得的单道轨迹质量较好;当路径搭接率为35%~40%时,沉积单层表面质量较好;采用熔融沉积三维打印工艺所成形锌合金实体的致密度可以达到97%以上;通过提高坩埚加热温度、成形基板温度、退火温度和退火时间,可以显著增强成形件的致密度;采用金属熔融沉积三维打印工艺,可以实现具有复杂形状内流道模具的成形,不仅可以降低加工难度,还可以提高成形效率;熔融沉积三维打印成形锌合金实体的抗拉强度为198 MPa,屈服强度为140 MPa,伸长率为0.453%,拉伸性能与传统挤压铸造工艺相当,实体的显微组织呈现更细化的树枝状.

Abstract:

A new three-dimensional printing technology based on fused and deposition was proposed in order to solve the high cost and low efficiency problems of the existing additive manufacturing technologies for metal parts. The technology is suitable for medium and low melting point metal material. The principle of the technology was introduced. The three-dimensional printing process of zinc alloy was conducted by using the self-developed equipment in order to analyze the effects of nozzle height, scanning speed and lapping rate on the forming effect. The width of single track was inversely proportional to height. When the nozzle height was 25~35 mm and the scanning speed was 8 mm/s, the single track quality was better. The surface quality of the deposited monolayer was better when the overlap ratio was 35%~40%. The density of the zinc alloy can be more than 97% by using the three-dimensional printing technology based on fused and deposition, and the density of the formed part can be enhanced by increasing the melting temperature, the temperature of the substrate, annealing temperature and annealing time. The technology can be used to realize the forming of the inner flow channel die with complex shape, which can reduce the processing difficulty and improve the forming efficiency. The tensile strength of zinc alloy solid was 198 MPa, the yield strength was 140 MPa, and the elongation was 0.453%, which were equivalent to those of conventional squeeze casting process. The microstructure of the zinc alloy solid was more refined.

收稿日期: 2017-05-18 出版日期: 2018-06-26
CLC:  TH164  
基金资助:

国家杰出青年科学基金资助项目(51525503);北京市科技计划课题资助项目(Z151100003715004);机械科学研究总院科技发展基金资助项目(201406).

通讯作者: 单忠德,男,研究员,博导.orcid.org/0000-0002-7966-0292.     E-mail: shanzd@cam.com.cn
作者简介: 杨立宁(1986-),男,博士后,从事先进制造技术及装备研究.orcid.org/0000-0003-0194-5762.E-mail:yang_li_ning@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

杨立宁, 单忠德, 戎文娟, 刘丰, 杨硕. 锌合金熔融沉积三维打印工艺[J]. 浙江大学学报(工学版), 2018, 52(7): 1364-1369.

YANG Li-ning, SHAN Zhong-de, RONG Wen-juan, LIU Feng, YANG Shuo. Three-dimensional printing technology of zinc alloy fused and deposition. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1364-1369.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.07.017        http://www.zjujournals.com/eng/CN/Y2018/V52/I7/1364

[1] BUCHBINDER D, SCHLEIFENBAUM H, HEIDRICH S, et al. High power selective laser melting (HP SLM) of aluminum parts[J]. Physics Procedia, 2011, 12(1):271-278.
[2] 李怀学,巩水利,孙帆,等.金属零件激光增材制造技术的发展及应用[J].航空制造技术,2012,416(20):26-31. LI Huai-xue, GONG Shui-li, SUN Fan, et al. Development and application of laser additive manufacturing for metal component[J]. Aeronautical Manufacturing Technology, 2012, 416(20):26-31.
[3] 孙会来,赵方方,林树忠,等.激光熔覆研究现状与发展趋势[J].激光杂志,2008,29(1):4-6. SUN Hui-lai, ZHAO Fang-fang, LIN Shu-zhong, et al. Research progress and development trend on laser cladding[J]. Laser Journal, 2008, 29(1):4-6.
[4] 齐海波,颜永年,林峰.电子束快速制造技术制备SiCP/Al复合材料[J].材料工程,2005(1):61-64. QI Hai-bo, YAN Yong-nian, LIN Feng. SiCp/Al composite made by electron beam rapid manufacturing[J]. Journal of Materials Engineering, 2005(1):61-64.
[5] 颜永年,齐海波,林峰,等.三维金属零件的电子束选区熔化成形[J].机械工程学报,2007,43(6):87-92. YAN Yong-nian, QI Hai-bo, LIN Feng, et al. Produced three-dimensional metal parts by electron beam selective melting[J]. Chinese Journal of Mechanical Engineering, 2007, 43(6):87-92.
[6] MATZ J E, EAGAR T W. Carbide formation in Alloy 718 during electron-beam solid freeform fabrication[J]. Metallurgical and Materials Transaction A:Physical Metallurgy and Materials Science, 2002, 33(8):2559-2567.
[7] 单忠德,杨立宁,刘丰,等.金属材料喷射沉积3D打印工艺[J].中南大学学报:自然科学版,2016, 47(11):3642-3647. SHAN Zhong-de, YANG Li-ning, LIU Feng, et al. Three-dimensional printing technology based on metal spray and deposition[J]. Journal of Central South University:Science and Technology, 2016, 47(11):3642-3647.
[8] KRUTH J P, MERCELIS P, VAERENBERGH J V, et al. Binding mechanisms in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 2005, 11(1):26-36.
[9] MORGAN R, SUTCLIFFE C J, O'NEILL W. Density analysis of direct metal laser re-melted 316L stainless steel cubic primitives[J]. Journal of Materials Science, 2004, 39(4):1195-1205.
[10] 杨毅,王剑彬.激光直接快速成形金属零件的研究进展[J].热处理技术与设备,2006,27(3):13-17. YANG Yi, WANG Jian-bin. Research progress oflaser direct rapid forming metallic components[J]. Heat Treatment Technology and Equipment, 2006,27(3):13-17.
[11] COSTA S E, MASANARI S, KOZO O, et al. Rapid manufacturing of metal components by laser forming[J]. International Journal of Machine Tools and Manufacture, 2006, 46(12/13):1459-1468.
[12] WU X, MEI J. Near net shape manufacturing of components using direct laser fabrication technology[J]. Journal of Materials Processing Technology, 2003,135(2/3):266-270.
[13] PINKERTON A J, LI Lin. The significance of deposition point standoff variations in multiple-layer coaxial laser cladding (coaxial cladding standoff effects)[J]. International Journal of Machine Tools and Manufacture, 2004, 44(6):573-584.
[14] NIKOLAS H, TIMOTHY Q. Effects of processing on microstructure and mechanical properties of atitanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM)[J]. Materials Science and Engineering, 2013(573):264-277.
[15] 杨光,巩水利,锁红波,等.电子束快速成形TC18合金多次堆积的组织特征研究[J].航空制造技术,2013,428(8):71-74. YANG Guang, GONG Shui-li, SUO Hong-bo, et al. Microstructure characterization of multi-deposited TC18 alloy by electron beam rapid manufacture[J]. Aeronautical Manufacturing Technology, 2013, 428(8):71-74.
[16] SUN S H, KOIZUMI Y, KUROSU S, et al. Builddirection dependence of microstructure and high-temperature tensile property of Co-Cr-Mo alloy fabricated by electron beam melting[J]. Acta Materialia, 2014, 64(2):154-168.

[1] 杜军, 王鑫, 任传奇, 白浩. 金属熔融涂覆成形薄壁件表面形貌与工艺[J]. 浙江大学学报(工学版), 2018, 52(1): 24-28.