Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (6): 1088-1096    DOI: 10.3785/j.issn.1008-973X.2018.06.007
计算机与通信技术     
无线通信网络电磁态势生成中的信号覆盖探测算法
周宇1, 王红军1, 邵福才2, 沙文浩1
1. 国防科技大学, 安徽 合肥 230037;
2. 装备发展部驻北京军代室, 北京 100191
Signal coverage detection algorithm for electromagnetic situation generation in wireless communication networks
ZHOU Yu1, WANG Hong-jun1, SHAO Fu-cai2, SHA Wen-hao1
1. National University of Denfense Technology, Hefei 230037, China;
2. Military Representative Office in Beijing, Beijing 100191, China
 全文: PDF(3242 KB)   HTML
摘要:

为突破野战环境下传统路测方法对无线通信网络覆盖范围探测的局限性,提出一种基于无线感知网络的信号覆盖探测算法.该算法首先通过随机部署的感知节点采集接收信号强度并进行高斯滤波处理;利用支持向量回归对采集数据进行变异函数曲线拟合;利用Kriging插值算法对目标区域进行插值估计;综合感知节点采样数据与插值点估计数据生成目标区域电磁态势.仿真结果表明,所提算法能够快速正确不间断地探测无线通信网络的真实覆盖情况,算法的均方根误差(RMSE)为9.8756,精度高于其他经典算法,具有一定的可行性和应用前景.

Abstract:

A signal coverage detection algorithm based on wireless sensing network was proposed in order to overcome the limitation of the traditional road test method in the field environment to detect wireless communication network coverage. The algorithm firstly collects the received signal strength through a randomly deployed sensing node and performs Gaussian filtering. The support vector regression(SVR) was used to perform curve fitting on the acquired data. The Kriging interpolation algorithm was used to estimate the target region. Interpolation point estimation data generates the electromagnetic state of the target area. The simulation results show that the proposed algorithm can detect the true coverage of the wireless communication network quickly and correctly. The root mean square error (RMSE) of the algorithm is 9.875 6. The accuracy is higher than that of other classical algorithms. It has certain feasibility and application prospects.

收稿日期: 2017-03-15 出版日期: 2018-06-20
CLC:  TN929  
基金资助:

国家自然科学基金资助项目(61273302);国防预研基金资助项目(41101020207).

通讯作者: 王红军,男,教授.orcid.org/0000-0002-7068-1345.     E-mail: hongjun-wang@163.com
作者简介: 周宇(1995-),男,硕士生,从事无线传感器网络研究.orcid.org/0000-0001-5295-4445.E-mail:yu_zhou1993@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

周宇, 王红军, 邵福才, 沙文浩. 无线通信网络电磁态势生成中的信号覆盖探测算法[J]. 浙江大学学报(工学版), 2018, 52(6): 1088-1096.

ZHOU Yu, WANG Hong-jun, SHAO Fu-cai, SHA Wen-hao. Signal coverage detection algorithm for electromagnetic situation generation in wireless communication networks. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(6): 1088-1096.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.06.007        http://www.zjujournals.com/eng/CN/Y2018/V52/I6/1088

[1] OKA D S, MOHAMMAD I, NADEA N P, et al. UAV-based localization for distributed tactical wireless networks using archimedean spiral[C]//2015 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Nusa Dua:IEEE, 2015:392-396.
[2] YOUNGSUNG K, AIEXIS K, ANDRES K. Coordinated energy management in resilient microgrids for wireless communication networks[J]. IEEE Journal ofEmerging and Selected Topics in Power Electronics, 2016, 4(4):1158-1173.
[3] YALIN E S, YI S, KARTAVYA N. Search in combined social and wireless communication networks:delay and success analysis[J]. IEEE Transactions on Wireless Communications, 2015, 14(9):4972-4980.
[4] GAO D P, YU H, CHU Q, et al. Research on tactical internet battlefield environment modeling based on OPNET[C]//20152nd International Conference on Information Science and Control Engineering. Shanghai:IEEE, 2015:896-900.
[5] GE X H, HUANG M D, CHEN J Q. Wireless single cellular coverage boundary models[J]. IEEE Access, 2016, 4:3569-3577.
[6] MOHAMMAD N A, WALID M D, TAPAN K S. Further validation of an electromagnetic macro model foranalysis of propagation path loss in cellular networksusing measured driving-test data[J]. IEEE Antennas and Propagation Magazine, 2014, 56(4):108-129.
[7] 孙斌,冯庆坤,金心宇,等.高铁环境中满意通信概率模型及切换算法研究[J]. 浙江大学学报:工学版,2012,46(9):1553-1559. SUN Bin, FENG Qing-lun, JIN Xin-yu, et al. Handoff algorithm and PoSC model under high-speed railway environment[J]. Journal of Zhejiang University:Engineering Science, 2012, 46(9):1553-1559.
[8] 范时平,罗丹,刘艳林.基于跳距与改进粒子群算法的DV-Hop定位算法[J].传感技术学报,2016,29(9):1410-1415. FAN Shi-ping, LUO Dan, LIU Yan-lin. DV-Hop localization algorithm based on Hop-Size and improvement particle swarm optimization[J]. Chinese Journal of Sensors and Actuators, 2016, 29(9):1410-1415.
[9] 陈战胜,沈鸿.能量高效的无线传感器网络路由协议[J].计算机科学,2015,42(8):90-94. CHEN Zhan-sheng, SHEN Hong. Energy-efficient multi-hop routing protocol for wireless sensor networks[J]. Computer Science, 2015, 42(8):90-94.
[10] 赫阳.基于无线传感器的电磁频谱监测网络研究与仿真[D].西安:西安电子科技大学,2012. HE Yang. Research and simulation of electromagnetic spectrum monitoring network based on wireless sensor[D]. Xi'an:Xidian University, 2012.
[11] VINCENT S, ALEXANDRE S, YVES L. Theoretical bit error floor analysis of 16-QAM OFDM signal with channel estimation using polynomial interpolation[J]. IET Signal Processing, 2016, 10(3):254-265.
[12] ARSHAD A, AUGUSTINE I, BAMIDELE A, et al. Location prediction optimisation in WSNs using kriging interpolation[J]. IET Wireless Sensor Systems, 2016,6(3):74-81.
[13] MRINMOY S, INDRAJIT B, MAINAK C, et al. A node deployment mechanism accounting into received signal strength and frequency diversity for a wireless sensor network[C]//2016 IEEE SENSORS. Orlando:IEEE Press, 2016:1-3.
[14] EVANGELOS Z, DIMITRIS T, ADRIAN M, et al. Multiterminal source coding with copula regression for wireless sensor networks gathering diverse data[J]. IEEE Sensors Journal, 2017, 17(1):139-150.
[15] KOYA S, TAKEO F. Kriging-based interference power constraint:Integrated design of the radio environment map and transmission power[J]. IEEE Trans. on Cognitive Communications and Networking, 2017,3(1):13-25.
[16] SONG X, MIHAI R, JAN K S. Adaptive weighted expected improvement with rewards approach in kriging assisted electromagnetic design[J]. IEEE Trans. on Magnetics, 2013, 49(5):2057-2060.
[17] KURT D, MILOS M. Wireless sensor networks:node localization for various industry problems[J]. IEEE Trans. on Industrial Informatics, 2015, 11(3):752-762.
[18] JIANG Q, MA Y, LIU K, et al. A probabilistic radio map construction scheme for crowdsourcing-based fingerprinting localization[J]. IEEE Sensors Journal, 2016, 16(10):3764-3774.
[19] WU Q, ZHOU D X. SVM soft margin classifiers:linear programming versus quadratic programming[J]. Neural Computation, 2005, 17(5):1160-1187.
[20] 刘扬,鲁乃唯,蒋友宝.结构体系可靠度分析的改进支持向量回归[J].浙江大学学报:工学版,2015,49(9):1692-1699. LIU Yang, LU Nai-wei, JIANG You-bao. Adaptive support vector regression method for structural system reliability analysis[J]. Journal of Zhejiang University:Engineering Science, 2015, 49(9):1692-1699.
[21] NORIKAZU T, JUN G, TETSUO N. Global convergence of SMO algorithm for support vector regression[J]. IEEE Trans. on Neural Networks, 2008, 19(6):971-982.
[22] SHAHABODDIN S, DALIBOR P, HOSSEIN J, et al. Sensor data fusion by support vector regression methodology:a comparative study[J]. IEEE Sensors Journal, 2015, 15(2):850-854.
[23] 李明山,王正明,张仪.基于均匀试验设计的支持向量回归参数选择方法[J].系统仿真学报,2008,20(8):2195-2199. LI Ming-shan, WANG Zheng-ming, ZHANG Yi. New method for selecting parameters of support vector machine regression based on uniform design[J]. Journal of System Simulation, 2008, 20(8):2195-2199.
[24] 周倜.海战场电磁态势生成若干关键技术研究[D].哈尔滨:哈尔滨工程大学,2013. ZHOU Ti. Research on several key techniques of electromagnetic situation generation in sea battlefield[D]. Harbin:Harbin Engineering University, 2013.
[25] 曹诗卉,亓迎川.基于最小二乘法平面拟合的点云法矢算法[J].空军预警学院学报,2016,30(1):41-43. CAO Shi-hui, QI Ying-chuan. Point cloud normal vector algorithm using least squares planar fitting[J]. Journal of Air Force Early Warning Academy, 2016,30(1):41-43.
[26] 陈丽,陈静,高清涛,等.基于支持向量机与反K近邻的分类算法研究[J].计算机工程与应用,2010,46(24):135-137. CHEN Li, CHEN Jing, GAO Qing-tao, et al. Classification algorithm research based on support vector machine and reverse K-nearest neighbor[J]. Computer Engineering and Applications, 2010, 46(24):135-137.

[1] 马恒达, 袁伟娜, 伏威. 基于导频放置优化的组稀疏信道估计方法[J]. 浙江大学学报(工学版), 2018, 52(9): 1747-1752.
[2] 吴超, 刘元安, 吴帆, 范文浩, 唐碧华. 移动性受限物联网应用中基于图论的高效数据采集策略[J]. 浙江大学学报(工学版), 2018, 52(8): 1444-1451.