Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (1): 192-206    DOI: 10.3785/j.issn.1008-973X.2018.01.025
地球科学与工程     
生物炭对土体物理化学性质影响的研究进展
李金文1, 顾凯1,2, 唐朝生1, 王宏胜1, 施斌1
1. 南京大学 地球科学与工程学院, 江苏 南京 210046;
2. 南京大学(苏州)高新技术研究院, 江苏 苏州 215123
Advances in effects of biochar on physical and chemical properties of soils
LI Jin-wen1, GU Kai1,2, TANG Chao-sheng1, WANG Hong-sheng1, SHI Bin1
1. School of Earth Science and Engineering, Nanjing University, Nanjing 210046, China;
2. Nanjing University High-Tech Institute at Suzhou, Suzhou 215123, China
 全文: PDF(1722 KB)   HTML
摘要:

研究表明,生物炭在土体改良、污染土修复和碳封存等方面具有广泛前景.回顾了近些年国内外生物炭对土体性质改良的相关研究,系统分析和总结了生物炭的基本性质、对土体物理化学性质的影响及影响改良效果的主要因素,可得如下结论.1)生物炭一般具有低密度、高比表面积、高pH、高CEC、高稳定性等特点,但这些性质会随着生物质来源和制备条件的不同而存在差异,影响改良效果;2)生物炭加入土体中,可以改变土体的物理性质,如土体密度、孔隙结构、孔径分布、持水性和力学性质,进而影响土体硬度、持水能力和团聚体稳定性等;3)生物炭加入土体后会影响土体的化学性质,如土体酸碱性、阳离子交换量、离子交换位点、负电荷浓度,进而影响土体固化、污染物修复效果及土体可利用性等;4)生物炭对土体的改良效果易受土体类型、生物炭添加量及粒径等的影响.

Abstract:

It was found that biochar can effectively change the properties of soil, therefore presenting great potential in soil improvement, waste management and carbon storage. The related research on biochar subjected to the effects of biochar on physical and chemical properties of soils and its influencing factors in recent years was reviewed. The following conclusions can be made. 1) Biochar usually has low density, high specific surface area, high pH, high CEC, high stability, etc., and these properties vary with the biomass sources and preparation conditions, thereby affecting the modification effect. 2) The physical properties of soil changed after adding biochar in the soil, such as soil bulk density, pore structure, pore size distribution, water holding capacity and mechanical properties, thereby affecting the soil hardness, water holding effect and aggregate stability. 3) Adding biochar soil will affect the chemical properties of soil, such as soil pH, cation exchange capacity, ion exchange sites, negative charge concentration, thereby affecting the soil hardening, soil remediation effect of pollutants and availability. 4) Effects of biochar amendment on soil were affected by soil types, biochar addition and grain size.

收稿日期: 2017-08-22 出版日期: 2017-12-15
CLC:  S156  
基金资助:

国家自然科学青年基金资助项目(41502274);江苏省自然科学青年基金资助项目(BK20150389).

通讯作者: 顾凯,男,副教授.orcid.org/0000-0001-7373-8266.     E-mail: gukai@nju.edu.cn
作者简介: 李金文(1994-),男,硕士生,从事生物炭土体改良的研究.orcid.org/0000-0001-6609-7843.E-mail:mf1629013@smail.nju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

李金文, 顾凯, 唐朝生, 王宏胜, 施斌. 生物炭对土体物理化学性质影响的研究进展[J]. 浙江大学学报(工学版), 2018, 52(1): 192-206.

LI Jin-wen, GU Kai, TANG Chao-sheng, WANG Hong-sheng, SHI Bin. Advances in effects of biochar on physical and chemical properties of soils. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(1): 192-206.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.01.025        http://www.zjujournals.com/eng/CN/Y2018/V52/I1/192

[1] IBI. Standardized product definition and product testing guidelines for biochar that is used in soil[S]. New York:International Biochar Initiative, 2012.
[2] DUKU M H, GU S, HAGAN E B. Biochar production potential in Ghana:a review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8):3539-3551.
[3] VERHEIJEN F, JEFFERY S, BASTOS A C, et al. Biochar application to soils:a critical review of effects on soil properties, processes and functions[M]. Italy:Joint Research Centre, Institute for Environment and Sustainability, 2010.
[4] PRESTON C M, SCHMIDT M W I. Black (pyrogenic) carbon:a synthesis of current knowledge and uncertainties with special consideration of boreal regions[J]. Biogeosciences, 2006, 3(4):397-420.
[5] 曹国良, 张小曳, 郑方成, 等. 中国大陆秸秆露天焚烧的量的估算[J]. 资源科学, 2006, 28(1):9-13. CAO Guo-liang, ZHANG Xiao-ye, ZHENG Fang-cheng, et al. Estimating the quantity of crop residues burnt open field in china[J]. Resources Science, 2006, 28(1):9-13.
[6] 梁桓, 索全义, 侯建伟, 等. 不同炭化温度下玉米秸秆和沙蒿生物炭的结构特征及化学特性[J]. 土壤, 2015, 47(5):886-891. LIANG Huan, SUO Quan-yi, HOU Jian-wei, et al. The structure and chemical properties of corn straw and Artemisia desertorum derived-biochars produced at different temperatures[J]. Soils, 2015, 47(5):886-891.
[7] 安增莉, 侯艳伟, 蔡超, 等. 水稻秸秆生物炭对Pb(Ⅱ)的吸附特性[J]. 环境化学, 2011, 30(11):1851-1857. AN Zeng-li, HOU Yan-wei, CAI Chao, et al. Adsorption of Pb(Ⅱ) by rice straw derived-biochar[J]. Environmental Chemistry, 2011, 30(11):1851-1857.
[8] WU F P, JIA Z K, WANG S G, et al. Contrasting effects of wheat straw and its biochar on greenhouse gas emissions and enzyme activities in a Chernozemic soil[J]. Biology and Fertility of Soils, 2013, 49(5):555-565.
[9] LIU Y X, YANG M, WU Y M, et al. Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar[J]. Journal of Soils and Sediments, 2011, 11(6):930-939.
[10] 陈心想, 何绪生, 耿增超, 等. 生物炭对不同土壤化学性质、小麦和糜子产量的影响[J]. 生态学报, 2013, 33(20):6534-6542. CHEN Xin-xiang, HE Xu-sheng, GENG Zeng-chao, et al. Effects of biochar on selected soil chemical properties and on wheat and millet yield[J]. Acta Ecologica Sinica, 2013, 33(20):6534-6542.
[11] 兖少锋, 陈瑾, 王丽乔,等. 雷竹落叶生物炭对微囊藻毒素的吸附性能[J]. 环境化学, 2014, 33(4):617-623. YAN Shao-feng, CHEN Jin, WANG Li-qiao, et al. Adsorption of microcystin-LR on the leaves-phyllostachys praecox-derived biochar[J]. Environmental Chemistry, 2014, 33(4):617-623.
[12] ZENG Z, ZHANG S D, LI T Q, et al. Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants[J]. Journal of Zhejiang University:Science B, 2013, 14(12):1152-1161.
[13] 楚颖超. 不同温度裂解椰子生物炭对重金属吸附的研究[D]. 海口:海南大学, 2015. CHU Ying-chao. Adsorption of heavy metals on the biochar derived from pyrolysis of coconut at different temperatures[D]. Haikou:Hainan University, 2015.
[14] 马锋锋, 赵保卫, 刁静茹, 等. 牛粪生物炭对水中氨氮的吸附特性[J]. 环境科学, 2015, 36(5):1678-1685. MA Feng-feng, ZHAO Bao-wei, DIAO Jing-ru, et al. Ammonium adsorption characteristics in aqueous solution by dairy manure biochar[J]. Environmental Science, 2015, 36(5):1678-1685.
[15] 张鹏, 武健羽, 李力, 等. 猪粪制备的生物炭对西维因的吸附与催化水解作用[J]. 农业环境科学学报, 2012, 31(2):416-421. ZHANG Peng, WU Jian-yu, LI Li, et al. Sorption and catalytic hydrolysis of carbaryl on pig-manure-derived biochars[J]. Journal of Agro-Environment Science, 2012, 31(2):416-421.
[16] 王豆, 郭海艳, 李阳, 等. 蚓粪生物炭制备温度对甲基橙吸附性能的影响[J]. 环境工程学报, 2016, 10(9):5172-5178. WANG Dou, GUO Hai-yan, LI Yang, et al. Effects of pyrolytic temperature on methyl orange adsorption by biochar derived from vermicompost[J]. Chinese Journal of Environmental Engineering, 2016, 10(9):5172-5178.
[17] PAZ-FERREIRO J, GASCO G, GUTIERREZ B, et al. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil[J]. Biology and Fertility of Soils, 2012, 48(5):511-517.
[18] RAJKOVICH S, ENDERS A, HANLEY K, et al. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil[J]. Biology and Fertility of Soils, 2012, 48(3):271-284.
[19] YUAN J H, XU R K, ZHANG H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102(3):3488-3497.
[20] NOVAK J M, LIMA I, XING B, et al. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand[J]. Annals of Environmental Science, 2009, 3(843):195-206.
[21] BANSAL R C, DONNET J B, STOECKLI F. Active carbon[M]. New York:Marcel Dekker, 1988:158-172.
[22] 陈再明, 方远, 徐义亮. 水稻秸秆生物炭对重金属Pb2+的吸附作用及影响因素[J]. 环境科学学报, 2012, 32(4):769-776. CHEN Zai-ming, FANG Yuan, XU Yi-liang, et al. Adsorption of Pb2+ by rice straw derived-biochar and its influential factors[J]. Acta Scientiae Circumstantiae, 2012, 32(4):769-776.
[23] BROWN R A, KERCHER A K, NGUYEN T H, et al. Production and characterization of synthetic wood chars for use as surrogates for natural sorbents[J]. Organic Geochemistry, 2006, 37(3):321-333.
[24] LEHMANN J, SKJEMSTAD J, SOHI S, et al. Australian climate-carbon cycle feedback reduced by soil black carbon[J]. Nature Geoscience, 2008, 1(12):832-835.
[25] LIANG B, LEHMANN J, SOLOMON D, et al. Black carbon increases cation exchange capacity in soils[J]. Soil Science Society of America Journal, 2006, 70(5):1719-1730.
[26] GUO J, LUA A C. Characterization of chars pyrolyzed from oil palm stones for the preparation of activated carbons[J]. Journal of Analytical and Applied Pyrolysis, 1998, 46(2):113-125.
[27] EMMERICH F G, LUENGO C A. Babassu charcoal:a sulfurless renewable thermo-reducing feedstock for steelmaking[J]. Biomass and Bioenergy, 1996, 10(1):41-44.
[28] EMMERICH F G, SOUSA J C, TORRIANI I L, et al. Applications of a granular model and percolation theory to the electrical resistivity of heat treated endocarp of babassu nut[J]. Carbon, 1987, 25(3):417-424.
[29] 岑睿, 屈忠义, 孙贯芳, 等. 秸秆生物炭对黏壤土入渗规律的影响[J]. 水土保持研究, 2016, 23(6):284-289. CEN Rui, QU Zhong-yi, SUN Guan-fang, et al. Effects of biochar on the physical properties and infiltration of clay loam[J]. Research of Soil and Water Conservation, 2016, 23(6):284-289.
[30] 田丹. 生物炭对不同质地土壤结构及水力特征参数影响试验研究[D]. 呼和浩特:内蒙古农业大学, 2013. TIAN Dan. The experimental study of influence of biochar on different texture soils structure and hydraulic characteristic parameters[D]. Huhehaote:Inner Mongolia Agricultural University, 2013.
[31] 颜永毫, 郑纪勇, 张兴昌, 等. 生物炭添加对黄土高原典型土壤田间持水量的影响[J]. 水土保持学报, 2013, 27(4):120-124. YAN Yong-hao, ZHENG Ji-yong, ZHANG Xing-chang, et al. Impact of biochar addition into typical soils on field capacity in loess plateau[J]. Journal of Soil and Water Conservation, 2013, 27(4):120-124.
[32] 张明月. 生物炭对土壤性质及作物生长的影响研究[D]. 泰安:山东农业大学, 2012. ZHANG Ming-yue. Effects of biochar on soil properties and crop growth[D]. Taian:Shandong Agricultural University, 2012.
[33] 孟李群. 施用生物炭对杉木人工林生态系统的影响研究[D]. 福州:福建农林大学, 2014. MENG Li-qun. Effect of biochar application on Chinese fir plantation ecosystem[D]. Fuzhou:Fujian Agriculture and Forestry University, 2014.
[34] OGUNTUNDE P G, ABIODUN B J, AJAYI A E, et al. Effects of charcoal production on soil physical properties in Ghana[J]. Journal of Plant Nutrition and Soil Science, 2008, 171(4):591-596.
[35] SUN F F, LU S G. Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil[J]. Journal of Plant Nutrition and Soil Science, 2014, 177(1):26-33.
[36] KIM J S, SPAROVEK G, LONGO R M, et al. Bacterial diversity of terra preta and pristine forest soil from the Western Amazon[J]. Soil Biology and Biochemistry, 2007, 39(2):684-690.
[37] SOANE B D. The role of organic matter in soil compactibility:a review of some practical aspects[J]. Soil and Tillage Research, 1990, 16(1/2):179-201.
[38] KINNEY T J, MASIELLO C A, DUGAN B, et al. Hydrologic properties of biochars produced at different temperatures[J]. Biomass and Bioenergy, 2012, 41(5):34-43.
[39] SULIMAN W, HARSH J B, ABU-LAIL N I, et al. The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil[J]. Science of the Total Environment, 2017, 574:139-147.
[40] 张峥嵘. 生物炭改良土壤物理性质的初步研究[D]. 杭州:浙江大学, 2014. ZHAG Zheng-rong. A preliminary study on the effect of biochar on soil physical properties[D]. Hangzhou:Zhejiang University, 2014.
[41] CHAN K Y, ZWIETEN L V, MESZAROS I, et al. Agronomic values of greenwaste biochar as a soil amendment[J]. Australian Journal of Soil Research, 2007, 45(8):629-634.
[42] HAQUE A, TANG C K, ISLAM S, et al. Biochar sequestration in lime-slag treated synthetic soils:a green approach to ground improvement[J]. Journal of Materials in Civil Engineering, 2014, 26(12):06014024.
[43] ZWIETEN L V, KIMBER S, MORRIS S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil, 2010, 327(1):235-246.
[44] FELLET G, MARCHIOL L, VEDOVE G D, et al. Application of biochar on mine tailings:effects and perspectives for land reclamation[J]. Chemosphere, 2011, 83(9):1262-1267.
[45] LAIRD D A, FLEMING P, DAVIS D D, et al. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil[J]. Geoderma, 2010, 158(3/4):443-449.
[46] NOVAK J M, BUSSCHERr W J, LAIRD D L, et al. Impact of biochar amendment on fertility of a southeastern coastal plain soil[J]. Soil Science, 2009, 174(2):105-112.
[47] HOSSAIN M K, STREZOV V, CHAN K Y, et al. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum)[J]. Chemosphere, 2010, 78(9):1167-1171.
[48] GLASER B, HAUMAIER L, GUGGENBERGER G, et al. The ‘Terra Preta’ phenomenon:a model for sustainable agriculture in the humid tropics[J]. Naturwissenschaften, 2001, 88(1):37-41.
[49] 何绪生, 张树清, 佘雕, 等. 生物炭对土壤肥料的作用及未来研究[J]. 中国农学通报, 2011, 27(15):16-25. HE Xu-sheng, ZHANG Shu-qing, SHE Diao, et al. Effects of biochar on soil and fertilizer and future research[J]. Chinese Agricultural Science Bulletin, 2011, 27(15):16-25.
[50] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7):844-851.
[51] 郭素华. 生物炭对铅、锌污染土壤的修复作用[D]. 湘潭:湖南科技大学, 2015. GUO Su-hua. Effect of biochar on lead or zinc contaminated soil[D]. Xiangtan:Hunan University of Science and Technology, 2015.
[52] CAO X D, MA L N, GAO B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science and Technology, 2009, 43(9):3285-3291.
[53] 朱庆祥. 生物炭对Pb、Cd污染土壤的修复试验研究[D]. 重庆:重庆大学, 2011. ZHU Qing-xiang. Experimental study on lead and cadmium contaminated soil remediation with biochar[D]. Chongqing:Chongqing University, 2011.
[54] EI-SHAFEY E, COX M, PICHUGIN A A, et al. Application of a carbon sorbent for the removal of cadmium and other heavy metal ions from aqueous solution[J]. Journal of Chemical Technology and Biotechnology, 2002, 77(77):429-436.
[55] 徐楠楠, 林大松, 徐应明, 等. 玉米秸秆生物炭对Cd2+的吸附特性及影响因素[J]. 农业环境科学学报, 2014, 33(5):958-964. XU Nan-nan, LIN Da-song, XU Ying-ming, et al. Adsorption of aquatic Cd2+ by biochar obtained from corn stover[J]. Journal of Agro-Environment Science, 2014, 33(5):958-964.
[56] 戴静, 刘阳生. 四种原料热解产生的生物炭对Pb2+和Cd2+的吸附特性研究[J]. 北京大学学报:自然科学版, 2013, 49(6):1075-1082. DAI Jing, LIU Yang-sheng. Adsorption of Pb2+ and Cd2+ onto biochars derived from pyrolysis of four kinds of biomasses[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49(6):1075-1082.
[57] LU H L, ZHANG W H, YANG Y X, et al. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar[J]. Water Research, 2012, 46(3):854-862.
[58] UCHIMIYA M, LIMA I M, KLASSON K T, et al. Immobilization of heavy metal ions (Cu, Cd, Ni, and Pb) by broiler litter-derived biochars in water and soil[J]. Journal of Agricultural and Food Chemistry, 2010, 58(9):5538-5544.
[59] LIU Z G, ZHANG F S. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass[J]. Journal of Hazardous Materials, 2009, 167(1-3):933-939.
[60] ZHANG P, SUN H W, YU L, et al. Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars:impact of structural properties of biochars[J]. Journal of Hazardous Materials, 2013, 244-245(3):217-224.
[61] WANG X L, SATO T, XING B S. Competitive sorption of pyrene on wood chars[J]. Environmental Science and Technology, 2006, 40(10):3267-3272.
[62] 王岙. 共存污染物对沉积物及其主要组分吸附阿特拉津的影响研究[D]. 长春:吉林大学, 2009. WANG Ao. Studies on effects of the coexisted contaminants on the adsorption characteristics of atrazine onto the surficial sediments and their main components[D]. Changchun:Jilin University, 2009.
[63] BONIN J L, SIMPSON M J. Variation in phenanthrene sorption coefficients with soil organic matter fractionation:the result of structure or conformation?[J]. Environmental Science and Technology, 2007, 41(1):153-159.
[64] COMELISSEN G, GUSTAFSSON O. Sorption of phenathrene to environmental black carbon in sediment with and without organic matter and native sorbates[J]. Environmental Science and Technology, 2004, 38(1):148.
[65] CHIOU C T, PETERS L J, FREED V H. A physical concept of soil-water equilibria for nonionic organic compounds[J]. Science, 1979, 206(4420):831-832.
[66] SONG Y, WANG F, BIAN Y R, et al. Bioavailability assessment of hexachlorobenzene in soil as affected by wheat straw biochar[J]. Journal of Hazardous Materials, 2012, 217-218(6):391-397.
[67] 吴晴雯, 孟梁, 张志豪, 等. 芦苇秸秆生物炭对水中菲和1,1-二氯乙烯的吸附特性[J]. 环境科学, 2016, 37(2):680-688. WU Qing-wen, MENG Liang, ZHANG Zhi-hao, et al. Sorption characteristics of phenanthrene and 1, 1-dichloroethene onto reed straw biochar in aquatic solutions[J]. Environmental Science, 2016, 37(2):680-688.
[68] 王子莹, 邱梦怡, 杨妍, 等. 不同生物炭吸附乙草胺的特征及机理[J]. 农业环境科学学报, 2016, 35(1):93-100. WANG Zi-ying, QIU Meng-yi, YANG Yan, et al. Sorption of acetochlor by biochars derived from wood dust and swine manure at different pyrolytic temperatures[J]. Journal of Agro-Environment Science, 2016, 35(1):93-100.
[69] TRYON E H. Effect of charcoal on certain physical, chemical, and biological properties of forest soils[J]. Ecological Monographs, 1948, 18(1):81-115.
[70] 田丹, 屈忠义, 勾芒芒, 等. 生物炭对不同质地土壤水分扩散率的影响及机理分析[J]. 土壤通报, 2013, 44(6):1374-1378. TIAN Dan, QU Zhong-yi, GOU Mang-mang, et al. Influence and mechanism analysis of biochar on water diffusivity of different soil textures[J]. Chinese Journal of Soil Science, 2013, 44(6):1374-1378.
[71] 杨铁钊, 杨志晓, 林娟, 等. 不同烤烟基因型根际钾营养和根系特性研究[J]. 土壤学报, 2009, 46(4):646-651. YANG Tie-zhao, YANG Zhi-xiao, LIN Juan, et al. K nutrition in rhizosphere and characteristics of roots of flue-cured tobaccos different in genotype[J]. Acta Pedologica Sinica, 2009, 46(4):646-651.
[72] 田丹, 屈忠义, 李波, 等. 生物炭对砂土水力特征参数及持水特性影响试验研究[J]. 灌溉排水学报, 2013, 32(3):135-137. TIAN Dan, QU Zhong-yi, LI Bo, et al. Influence of biochar on sandy soil hydraulic characteristic parameters and moisture holding properties[J]. Journal of Irrigation and Drainage, 2013, 32(3):135-137.
[73] 王丹丹, 郑纪勇, 颜永毫, 等. 生物炭对宁南山区土壤持水性能影响的定位研究[J]. 水土保持学报, 2013, 27(2):101-104. WANG Dan-dan, ZHENG Ji-yong, YAN Yong-hao, et al. Effect of biochar application on soil water holding capacity in the southern region of Ningxia[J]. Journal of Soil and Water Conservation, 2013, 27(2):101-104.
[74] DUGAN E, VERHOEF A, ROBINSON S, et al. Biochar from sawdust, maize stover and charcoal:Impact on water holding capacities (WHC) of three soils from Ghana[C]//19th World Congress of Soil Science, Soil Solutions for a Changing World. Brisbane, Australia:[s. n.], 2010.
[75] 高海英, 何绪生, 耿增超, 等. 生物炭及炭基氮肥对土壤持水性能影响的研究[J]. 中国农学通报, 2011, 27(24):207-213. GAO Hai-ying, HE Xu-sheng, GENG Zeng-chao, et al. Effects of biochar and biochar-based nitrogen fertilizer on soil water-holding capacity[J]. Chinese Agricultural Science Bulletin, 2011, 27(24):207-213.
[76] LEHMANN J, JOSEPH S. Biochar for environmental management:an introduction[M]. London:Earthscan, 2009:1-12.
[77] 齐瑞鹏, 张磊, 颜永毫, 等. 定容重条件下生物炭对半干旱区土壤水分入渗特征的影响[J]. 应用生态学报, 2014, 25(8):2281-2288. QI Rui-peng, ZHANG Lei, YAN Yong-hao, et al. Effects of biochar addition into soils in semiarid land on water infiltration under the condition of the same bulk density[J]. Chinese Journal of Applied Ecology, 2014, 25(8):2281-2288.
[78] 赵迪, 黄爽, 黄介生. 生物炭对粉黏壤土水力参数及胀缩性的影响[J]. 农业工程学报, 2015, 31(17):136-143. ZHAO Di, HUANG Shuang, HUANG Jie-sheng. Effects of biochar on hydraulic parameters and shrinkage-swelling rate of silty clay[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(17):136-143.
[79] 文曼, 郑纪勇. 生物炭不同粒径及不同添加量对土壤收缩特征的影响[J]. 水土保持研究, 2012, 19(1):46-50. WEN Man, ZHENG Ji-yong. Effects of different sizes of biochar and their additiont rates on soil shrinkage characteristics[J]. Research of Soil and Water Conservation, 2012, 19(1):46-50.

No related articles found!