Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (1): 59-64    DOI: 10.3785/j.issn.1008-973X.2018.01.009
机械与能源工程     
微小圆管内正丁醇催化燃烧及动力学特性
赵庆辰, 周俊虎, 王业峰, 龙宇, 李欣婷, 杨卫娟
浙江大学 能源清洁利用国家重点实验室, 浙江 杭州 310027
Catalytic combustion and kinetic characteristics of n-butanol with Pt/ZSM5 particles in meso channel
ZHAO Qing-chen, ZHOU Jun-hu, WANG Ye-feng, LONG Yu, LI Xin-ting, YANG Wei-juan
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1318 KB)   HTML
摘要:

通过实验研究在4 mm的石英管中以Pt/ZSM-5为催化剂的正丁醇催化燃烧反应,对比讨论当量比、流量对正丁醇催化效应的影响,分析转化率、产物浓度、燃烧效率等催化燃烧特性,拟合计算表观活化能.研究结果显示,保持体积空速小于19 080 h-1,流量对丁醇在该微小圆管内的催化燃烧影响较小;气体总流量不变,减小混合气体的当量比,正丁醇的转化率大幅提高,表明氧在催化剂表面的吸附是正丁醇在Pt/ZSM-5表面反应的主导因素.当量比=1时,乙醛、二甲醚、一氧化碳等中间产物较多;当量比=0.3时,一氧化碳几乎没有被检测到.减少混合气体的流量和减小混合气体的当量比,正丁醇的燃烧效率都会提高.正丁醇在Pt/ZSM-5上反应的表观活化能为(110±20) kJ/mol,在低当量比、低流量下,正丁醇在催化剂下反应的表观活化能更小.

Abstract:

The catalytic reaction of n-butanol with Pt/ZSM-5 in a 4 mm quartz tube was experimentally analyzed. The effects of equivalence ratio and flow rate on the catalytic effect of butyl alcohol were compared and discussed. The combustion performance, including the conversation of n-butanol with temperature, product concentration, combustion efficiency,the apparent activation energy, was analyzed. The effect of flow rate on the catalytic combustion of butanol in the micro tube was small when the volume space velocity was less than 19080 h-1. Decrease of the equivalence ratio at a fixed flow rate yielded a higher catalytic performance toward the conversation of n-butanol, indicating that the adsorption of oxygen was the dominant factor for the reaction of n-butanol on the surface of Pt/ZSM-5. More intermediate products like acetaldehyde, dimethyl ether, carbon monoxide were detected when the equivalence ratio was 1; there was no carbon monoxide when the equivalence ratio was 0.3. Decrease of the equivalence ratio or the flow rate both yielded higher combustion efficiency. The apparent activation energy of the reaction of n-butanol with Pt/ZSM-5 was (110 ±20) kJ/mol, and the apparent activation energy of the reaction was smaller at a low equivalence ratio or low flow rate.

收稿日期: 2016-11-25 出版日期: 2017-12-15
CLC:  TK121  
基金资助:

国家自然科学基金资助项目(51336010);中央高校基本科研业务费专项资金资助项目(2016FZA4011).

通讯作者: 杨卫娟,女,教授.orcid.org/0000-0003-4820-7302.     E-mail: yangwj@zju.edu.cn
作者简介: 赵庆辰(1993-),男,硕士生,从事微尺度燃烧的研究.orcid.org/0000-0002-5688-6192.E-mail:qingchen@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

赵庆辰, 周俊虎, 王业峰, 龙宇, 李欣婷, 杨卫娟. 微小圆管内正丁醇催化燃烧及动力学特性[J]. 浙江大学学报(工学版), 2018, 52(1): 59-64.

ZHAO Qing-chen, ZHOU Jun-hu, WANG Ye-feng, LONG Yu, LI Xin-ting, YANG Wei-juan. Catalytic combustion and kinetic characteristics of n-butanol with Pt/ZSM5 particles in meso channel. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(1): 59-64.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.01.009        http://www.zjujournals.com/eng/CN/Y2018/V52/I1/59

[1] MARUTA K. Micro andmesoscale combustion[J]. Proceedings of the Combustion Institute, 2011,33(1):125-150.
[2] WALTHER D C, AHN J. Advances and challenges in the development of power-generation systems at small scales[J]. Progress in Energy and Combustion Science, 2011,37(5):583-610.
[3] KAISARE N S, VLACHOS D G. A review onmicrocosm-bustion:fundamentals, devices and applications[J]. Progress in Energy and Combustion Science, 2012,38(3):321-359.
[4] JU Y G, MARUTA K. Microscale combustion:technol-ogy development and fundamental research[J]. Progress in Energy and Combustion Science, 2011,37(6):669-715.
[5] XU Y M, SHAN C X, PAN J F, et al. A comparative study on combustion characteristics of methane, propane and hydrogen fuels in a micro-combustor[J]. International Journal of Hydrogen Energy, 2015,40(46):16587-16596.
[6] 张永生, 周俊虎, 杨卫娟, 等. 微燃烧稳定性分析和微细管道燃烧实验研究[J]. 浙江大学学报:工学版, 2006, 40(7):1178-1182. ZHANG Yong-sheng, ZHOU Jun-hu, YANG Wei-juan, et al. Burning stability analysis of micro-combustion and experimental research of combustion in microscale tube[J]. Journal of Zhejiang University:Engineering Science, 2006, 40(7):1178-1182.
[7] 蔡江淮.丁醇燃烧反应动力学的实验与模型研究[D]. 合肥:中国科学技术大学, 2013. CAI Jiang-huai. Experimental and model study on the kinetics of butanol combustion[D]. Hefei:University of Science and Technology of China, 2013.
[8] SARATHY S M,OßWALD P, HANSEN N, et al. Alcohol combustion chemistry[J]. Progress in Energy and Combustion Science, 2014,44(2014):40-102.
[9] DAGAUT P, SARATHY S M, THOMSON M J. A chemical kinetic study of n-butanol oxidation at elevated pressure in a jet stirred reactor[J]. Proceedings of the Combustion Institute, 2009,32(1):229-237.
[10] VELOO P S, WANG Y L, EGOLFOPOULOS F N, et al. A comparative experimental and computational study of methanol, ethanol, and n-butanol flames[J]. Combustion and Flame, 2010,157(10):1989-2004.
[11] MOXEY B G, CAIRNS A, ZHAO H. A comparison ofbutanol and ethanol flame development in an optical s-park ignition engine[J]. Fuel, 2016,170:27-38.
[12] SARATHY S M, VRANCKS S, YASUNAGA K, et al. A comprehensive chemical kinetic combustion model for the fourbutanol isomers[J]. Combustion and Flame, 2012,159(6):2028-2055.
[13] GRANA R, FRASSOLDATI A, FARAVELLIET T, et al. An experimental and kinetic modeling study of com-bustion of isomers of butanol[J]. Combustion and Flame, 2010,157(11):2137-2154.
[14] SARATHY S M, THOMSON M J, TOGBE C, et al. An experimental and kinetic modeling study of n-butan-ol combustion[J]. Combustion and Flame, 2009,156(4):852-864.
[15] MOSS J T, BERKOWITZ A M, OEHLSCHLAEGER M A, et al. Anexperimental and kinetic modeling study of the oxidation of the four isomers of Butanol[J]. The Journal of Physical Chemistry A, 2008,112(43):10843-10855.
[16] BASINSKA A, KLIMKIEWICZ R, DOMKA F. Ru/Fe2O3 catalysts in n-butanol conversion[J]. Applied Catalysis A-General, 2001,207(1/2):287-294.
[17] BEHRENS D A, LEE I C, WAITS C M. Catalytic co-mbustion of alcohols for microburner applications[J]. Journal of Power Sources, 2010,195(7):2008-2013.
[18] TIAN Z Y, CHAFIK T, ASSEBBANET M, et al. Towardsbiofuel combustion with an easily extruded clay as a natural catalyst[J]. Applied Energy, 2013,107:149-156.
[19] PAPAEFTHIMIOU P, IOANNIDES T, VERYKIOS X E. Combustion of non-halogenated volatile organic compounds over group VⅢ metal catalysts[J]. Applied Catalysis B-Environmental, 1997,13(3/4):175-184.
[20] YANG M, KUITTINEN S, KEINANEN M, et al. The use of (green field) biomass pretreatment liquor for fermentativebutanol production and the catalytic oxidation of biobutanol[J]. Chemical Engineering Research and Design, 2014,92(8):1531-1538.
[21] FINOL M F, ROOKE J, SUB L, et al. Additional effects of Pt and Nb on hierarchically porous titania in the catalytic removal of n-butanol[J]. Catalysis Today, 2012,192(1):154-159.
[22] DENG C, YANG W J, ZHOU J H, et al. Catalytic combustion of methane, methanol, and ethanol in microscale combustors with Pt/ZSM-5 packed beds[J]. Fuel, 2015,150(2015):339-346.
[23] YANG W J, DENG C, ZHOU J H, et al.Mesoscale combustion of ethanol and dimethyl ether over Pt/ZSM-5:differences in combustion characteristics and catalyst d-eactivation[J]. Fuel, 2016,165(2016):1-9.
[24] JIANG B S, CHANGET R, HOU Y C, et al. Kinetics of n-Butanol partial oxidation to Butyraldehyde over lanthanum-transition metal perovskites[J]. Industrial and Engineering Chemistry Research, 2012,51(43):13993-13998.

[1] 吴学成, 王怀, 浦世亮, 浦兴国, 袁镇福, 陈玲红, 岑可法. 数字共轴全息中颗粒识别与定位[J]. J4, 2010, 44(4): 765-770.