Please wait a minute...
浙江大学学报(工学版)
能源与环境工程     
基于卡塞格林原理的火焰自由基测量系统
钟英杰, 王根娟, 王明晓, 王炜豪, 邓凯
浙江工业大学 能源与动力工程研究所,浙江 杭州 310014
System based on Cassegrain optical principle applicable to measure chemiluminescence in flame
HONG Ying-jie, WANG Gen-juan, WANG Ming-xiao, WANG Wei-hao, DENG Kai
Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou 310014, China
 全文: PDF(1830 KB)   HTML
摘要:

为了拓展火焰自由基荧光强度的测试方法,基于卡塞格林光学原理设计火焰非接触式定点测量系统,该系统可以实现对火焰自由基荧光强度的三维局部定点测量,具有定点聚焦及动态信号采集的功能.利用逆光路原理对自行设计的卡塞格林光线定点采集装置的聚焦功能进行验证,实验结果表明,该装置可以采集直径为0.382 mm,长为1.628 mm区域内的光线,具有三维高空间分辨率.基于甲烷部分预混火焰的OH基、CH基的光强随半径方向的分布数据分析,证明卡塞格林光线定点采集装置在火焰自由基荧光强度中定点测量的有效性与高空间分辨率特性.

Abstract: A non-contact system based on Cassegrain optical principle was developed in order to expend the test method of radical species in flames. The system can detect chemiluminescence of local combustion reactions and obtain continuous signals. It is very suitable to acquire dynamic signals on a point. The effective light-collection volume was experimentally investigated by sending visible light through the device in the reverse direction. The effective light-collection volume’s diameter is only 0.382 mm and its length is 1.628 mm. OH-radical and CH-radical chemiluminescence in CH4/Air premixed flame were monitored in order to demonstrate the performance of the system. The experimental results show that the system has high spatial resolution and is practicable in the study of flame.
出版日期: 2017-05-01
CLC:  TK 16  
基金资助:

国家自然科学基金资助项目(51106139);浙江省科技厅资助项目(2014C31034).

通讯作者: 邓凯,女,讲师. ORCID: 0000-0003-0233-3442.      E-mail: dkai@zjut.edu.cn
作者简介: 钟英杰(1962—),男,教授,从事燃烧、传热基础等研究. ORCID: 0000-0003-1646-0709. E-mail:zhong_yingjie@zjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

钟英杰, 王根娟, 王明晓, 王炜豪, 邓凯. 基于卡塞格林原理的火焰自由基测量系统[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.05.026.

HONG Ying-jie, WANG Gen-juan, WANG Ming-xiao, WANG Wei-hao, DENG Kai. System based on Cassegrain optical principle applicable to measure chemiluminescence in flame. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.05.026.

参考文献(References):
[1] 宋旭东,郭庆华,张婷,等.甲烷同轴射流扩散火焰中自由基的辐射特性[J].中国电机工程学报,2013,33(35): 50-57.
SONG Xu-dong,GUO Qing-hua,ZHANG Ting, et al. Radiation characteristics of radicals in methane co-flowing jet diffusion flame [J]. Journal of Chinese Electrical Engineering Science, 2013, 33(35): 50-57.
[2] MIGLIORINI F, MAFFI S, IULIIS SD, et al. Analysis of chemiluminescence measurements by grey-scale ICCD and colour digital cameras [J]. Measurement Science and Technology, 2014, 25(5): 1009-1016.
[3] 邓凯,李华,杨臧健,等.基于红外和纹影技术研究声作用下火焰锋面运动及热量演化[J].实验流体力学,2016, 30(6): 26-31.
DENG KAI, LI HUA, YANG ZJ, et al. Investigation of heat transfer and flame dynamics under acoustic excitation based on infrared and shadow method [J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6):26-31.
[4] BRANCH MC, SADEQI ME, ALFARAYEDHI AA. Measurements of the structure of laminar, premixed flames of CH4/NO2/O2 and CH2O/NO2/O2 mixtures [J]. Combustion and Flame, 1991, 83(3/4): 228-239.
[5] HULT J, GASHI S, CHAKRABOTRY N, et al. Measurement of flame surface density for turbulent premixed flames using PLIF and DNS [J]. Proceedings of the Combustion Institute, 2007, 31(1): 1319-1326.
[6] TANAHASHI M,MURAKAMI S,CHOI GM,et al. Simultaneous CH-OH PLIF and stereoscopic PIV measurements of turbulent premixed flames [J]. Proceeding of Combustion Institute,2005,30(1): 1665-1672.
[7] LEE SY, SEO S, BRODA JC, et al. An experimental estimation of mean reaction rate and flame structure during combustion instability in a lean premixed gas turbine combustor [J]. Proceedings of the Combustion Institute, 2000, 28(1): 775-782.
[8] AKAMATSU F, WAKABAYASHI T, TSUSHIMA S, et al. The development of a light-collecting probe with high spatial resolution applicable to randomly fluctuating combustion field [J]. Measurement Science & Technology, 1999, 10(12):1240-1246.
[9] 汪亮.燃烧实验诊断学[M].北京:国防工业出版社,2011: 7.
[10] KOJIMA J, IKEDA Y, NAKAJIMA T. Measuring local OH to analyze flame front movement in a turbulent premixed flame [J]. American Institute of Aeronautics & Astronautics, 1999,1(1): 1-5.
[11] IKEDA Y, KOJIMA J, NAKAJIMA T, et al. Measurement of the local flame front structure of turbulent premixed flames by local chemiluminescence [J]. Proceedings of the Combustion Institute, 2000, 28(1):343-350.
[12] KOJIMA J, IKEDA Y, NAKAJIMA T. Spatially resolved measurement of OH, CH and C2 chemiluminescence in the reaction zone of laminar methane/air premixed flames [J]. Proceedings of the Combustion Institute, 2013, 28(2): 1757-1764.
[13] KIM B, KANEKO M, IKEDA Y, et al. Detailed spectral analysis of the process of HCCI combustion [J]. Proceedings of the Combustion Institute, 2002, 29(1): 671-677.
[14] IKEDA Y, KOJIMA J, HASHIMOTO H. Local chemiluminescence spectra measurements in a high-pressure laminar methane/air premixed flame [J]. Proceedings of the Combustion Institute, 2002, 29(2): 1495-1501.
[15] BEDUNEAU JL, IKEDA Y. Application of laser ignition on laminar flame front investigation [J]. Experiments in Fluids, 2004, 36(1): 108-113.
[16] KOJIMA J, IKEDA Y, NAKAJIMA T. Basic aspects of OH(A), CH(A), and C2(d) chemiluminescence in the reaction zone of laminar methane-air premixed flames [J]. Combustion and Flame, 2005, 140(1/2): 34-45.
[17] BEDUNEAU JL, KAWAHARA N, NAKAYAMA T, et al. Laser-induced radical generation and evolution to a self-sustaining flame [J]. Combustion and Flame, 2009, 156(3): 642-656.
[18] 张以谟.应用光学[M].第3版.北京:电子工业出版社,2008.
[19] HARDALUPAS Y, ORAIN M. Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame [J]. Combustion and Flame, 2004, 139(3):188-207.
[20] ORAIN M. Experiments with gas and liquidfuelled flame[D]. London: University of London, 2001.
[21] YONG KJ, CHUNG HJ, YOUNG JC. Evaluation of the equivalence ratio of the reacting mixture using intensity ratio of chemiluminescence in laminar partially premixed CH4air flames [J]. Experimental Thermal and Fluid Science, 2006,30(7): 663-673.
[1] 朱凯,王云鹤,秦雪薇,黄亚东,王强,吴珂. 升温速率对沥青燃烧和气态产物释放特性的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1805-1811.
[2] 周陈颖,周昊,邢裕健,张佳凯,周明熙. 添加剂对高碱煤灰渣流动特性及钠捕获效率的影响[J]. 浙江大学学报(工学版), 2020, 54(3): 623-630.
[3] 陆燕宁,章洪涛,许岩韦,朱燕群,万凯迪,邵哲如,王智化. 烟气再循环对生物质炉排炉燃烧影响的数值模拟[J]. 浙江大学学报(工学版), 2019, 53(10): 1898-1906.
[4] 山石泉,周志军,匡建平,张煜,岑可法. 褐煤在N2及CO2气氛下的热解与富氧燃烧特性[J]. 浙江大学学报(工学版), 2019, 53(9): 1826-1834.
[5] 李晓洁,岑建孟,夏芝香,方梦祥,王涛,王勤辉,骆仲泱. 松木屑与煤加压热解特性[J]. 浙江大学学报(工学版), 2019, 53(7): 1298-1305.
[6] 周昊,张昆,李亚威,张佳凯. 采用动网格技术的煤粉-玉米秸秆掺烧飞灰沉积数值模拟[J]. 浙江大学学报(工学版), 2019, 53(6): 1139-1147.
[7] 黄眺,杨卫娟,周俊虎,王智化,刘建忠,岑可法. 微型圆管中正庚烷/空气预混催化燃烧特性实验[J]. 浙江大学学报(工学版), 2016, 50(11): 2058-2063.
[8] 李建, 刘猛, 段钰锋, 许超. 污泥掺混褐煤水热制固体燃料的理化特性[J]. 浙江大学学报(工学版), 2016, 50(2): 327-332.
[9] 周昊, 时伟, 朱国栋. MMT添加剂解决CO对SNCR的抑制作用[J]. 浙江大学学报(工学版), 2015, 49(12): 2237-2243.
[10] 胡友瑞,刘彦,汪洋,刘建忠,周俊虎,胡巍,李洪伟. 高湿氢氧喷注器数值分析与正交设计[J]. 浙江大学学报(工学版), 2015, 49(12): 2403-2409.
[11] 沈忠良,邓凯,王明晓,钟英杰. 声场频率与振幅对火焰NOx生成特性的影响[J]. 浙江大学学报(工学版), 2015, 49(11): 2198-2204.
[12] 韩志江, 周俊虎, 杨卫娟, 杨成虎, 刘建忠, 岑可法. 镁在水蒸气中着火特性和模型分析[J]. J4, 2013, 47(2): 267-272.
[13] 杨文闯, 杨卫娟, 周志军, 袁炜东, 陈瑶姬, 周俊虎, 岑可法. 不同二次风角度的W炉冷态流场实验研究[J]. J4, 2013, 47(1): 139-145.
[14] 梁军辉, 黄群星, 冯玉霄, 池涌, 严建华. 氧体积分数对乙烯扩散火焰中烟黑生成影响的实验[J]. J4, 2012, 46(8): 1465-1471.
[15] 周志军,姜旭东,周俊虎,刘建忠,岑可法. 煤粉富氧燃烧着火模式判断和动力学参数分析[J]. J4, 2012, 46(3): 482-488.