Please wait a minute...
浙江大学学报(工学版)
机械与电气工程     
电磁轴承-柔性转子系统多目标加权的主动振动控制
蒋科坚, 祝长生
1. 浙江理工大学 信息学院,浙江 杭州 310018; 
2. 浙江大学 电气工程学院,浙江 杭州 310027
Vibration suppressing with mixed weight for multi-targets in active magnetic bearing-flexible rotor system
JIANG Ke jian, ZHU Chang sheng
1. College of Informatics and Electronics, Zhejiang SciTech University, Hangzhou 310018, China;
2. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2083 KB)   HTML
摘要:

为了避免影响系数法求解出一个过大的校正力计算结果,解决由此造成的电磁力饱和以及转子悬浮失稳问题,拓展基于最小二乘法的影响系数法,提出多目标价值函数混合加权的柔性转子振动主动控制方法.利用多个目标价值函数的加权设计,不仅实现了多个节点振动之间按权值实现振动抑制,而且能够在不同量纲的振动幅值和所需电磁力之间实现权衡.算例仿真表明,提出的控制方法可以在实现转子振动控制的同时,顾及到电磁轴承(AMB)电磁力的能力极限.在转子振动能够控制在允许的范围内,适当减小对电磁力的需求,降低对电磁轴承的功率要求.

Abstract:

An exceedingly great magnetic force can often be required by the influence coefficient, so that the magnetic force saturating would destroy the stability of rotor levitating. A vibration suppressing method with mixed weight for multi-cost functions was proposed. Not only the rotor vibration can be given attention, but also the required magnetic force is considered in the cost function. The simulation results indicate that the proposed method can mediate not only among a group of the target nodes vibration, but between the rotor vibration and the required magnetic force. The advantage of the proposed method means that the requirement for the magnetic force of active magnetic bearing (AMB) can be appropriately decreased as long as the rotor vibration is within the allowable range. The method provides the feasible way for the low-power control of AMB.

出版日期: 2016-10-28
:  TH 133  
基金资助:

国家自然科学基金资助项目(51477155,11272288,11172261); 浙江省自然科学基金资助项目(LZ13E070001); 浙江省公益技术应用研究资助项目(2015C31063);先进航空发动机协调创新中心资助项目.

通讯作者: 祝长生,男,教授,博导.   
作者简介: 蒋科坚(1972—),男,教授,从事电磁轴承支承特性、转子振动主动控制的研究. E-mail: jkjofzju@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

蒋科坚, 祝长生. 电磁轴承-柔性转子系统多目标加权的主动振动控制[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.10.014.

JIANG Ke jian, ZHU Chang sheng. Vibration suppressing with mixed weight for multi-targets in active magnetic bearing-flexible rotor system. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.10.014.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.10.014        http://www.zjujournals.com/eng/CN/Y2016/V50/I10/1946

[1] STEPHEN W. Adaptive optimal control of active balancing systems for highspeed rotating machinery [D]. Michigan: The University of Michigan, 1999.
[2] ARIAS M, SILVA G. Finite element modeling and unbalance compensation for a two disks asymmetrical rotor system [C]∥ 5th International Conference on Electrical Engineering, Computing Science and Automatic Control. Mexico City: [s.n.], 2008: 386391.
[3] TSENG C, SHIH T, LIN J. A Kalman filterbased automatic rotor dynamic balancing scheme for electric motor mass production [C]∥ The Proceedings of Materials Science Forum(Vols: 505507). Switzerland: [s.n.], 2006: 9971002.
[4] KANG Y, LIN T, CHU M. Design and simulation of a neuralpd controller for automatic balancing of rotor[C]∥ 3rd International Symposium on Neural Networks. Chengdu: [s.n.], 2006: 1104-1109.
[5] 谢振宇,徐龙祥,李迎,等.控制参数对磁悬浮轴承转子系统动态特性的影响[J].航空动力学报,2004, 19(2): 174-178.
XIE Zhenyu, XU Longxiang, LI Ying, et al. Influence of control parameters on dynamic characteristics ofactive magnetic bearing system [J]. Journal of Aerospace Power, 2004, 19(2): 174-178.
[6] XU Y, YU H, ZHAO L. Development of a magnetic bearing rotor dynamics analysis software package [C]∥ Proceedings of the 12th International Symposium on Magnetic Bearings. Arlington: [s. n.], 2010: 53-70.
[7] 李红伟,徐旸,谷会东.电磁轴承挠性转子系统的本机动平衡方法[J].中国机械工程,2008, 19(12): 1419-1428.
LI Hongwei, XU Yang, GU Huidong. Field dynamic balancing method in AMB—flexible rotor system [J]. China Mechanical Engineering, 2008, 19(12): 1419-1428.
[8] CADE I, KEOGH P, SAHINKAYA M. Fault identification in rotor / magnetic bearing systems using discrete time wavelet coefficients [J]. IEEE/ASME Transactions on Mechatronics, 2005, 10(6): 648-657.
[9] SCHLOTTER M, KEOGH P. Synchronous positionrecovery control for flexible rotors in contact with auxiliary bearings [J]. Journal of Vibration and Acoustics, 2007, 129(5): 550-558.
[10] SAHINKAYA M, ABULRUB A, KEOGH P, et al. Multiple sliding and rolling contact dynamics for a flexible rotor/magnetic bearing system [J]. IEEE/ASME Transactions on Mechatronics, 2007, 12(2): 179-189.
[11] KEOGH P. Transient rotor/active magnetic bearing control using sampled wavelet coefficients [J]. Journal of Engineering for Gas Turbines and Power, 2006,192(2): 549-555.
[12] COLE M, KEOGH P, SAHINKAYA M, et al.Towards faulttolerant active control of rotormagnetic bearing systems [J]. Control Engineering Practice, 2004, 12(4): 491-501.

[1] 李特, 芮执元, 雷春丽, 郭俊锋, 胡赤兵. 考虑气隙变化的高速电主轴热特性仿真[J]. 浙江大学学报(工学版), 2016, 50(5): 941-948.
[2] 宁峰平,姚建涛,孙锟,马明臻,赵永生. 多因素耦合对空间轴承热学特性的影响[J]. 浙江大学学报(工学版), 2016, 50(1): 129-136.
[3] 袁幸,朱永生,张优云,洪军,祁文昌. 基于正反问题的滚动轴承损伤程度评估[J]. J4, 2012, 46(11): 1960-1967.
[4] 蒋科坚,祝长生. 主动电磁轴承转子系统自适应不平衡补偿控制[J]. J4, 2011, 45(3): 503-509.
[5] 杨先勇,周晓军,张文斌,杨富春,林勇. 基于形态小波和S变换的滚动轴承故障特征提取[J]. J4, 2010, 44(11): 2088-2092.
[6] 杨先勇, 周晓军, 林勇, 张文斌, 沈路. 基于V-detector算法的滚动轴承故障诊断方法[J]. J4, 2010, 44(9): 1805-1810.
[7] 杨先勇, 周晓军, 张文斌, 杨富春. 基于局域波法和KPCA-LSSVM的滚动轴承故障诊断[J]. J4, 2010, 44(8): 1519-1524.